論文の概要: Predator-prey survival pressure is sufficient to evolve swarming
behaviors
- arxiv url: http://arxiv.org/abs/2308.12624v1
- Date: Thu, 24 Aug 2023 08:03:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-25 14:44:20.591513
- Title: Predator-prey survival pressure is sufficient to evolve swarming
behaviors
- Title(参考訳): 捕食者・捕食者生存圧は群れ行動の進化に十分である
- Authors: Jianan Li, Liang Li, Shiyu Zhao
- Abstract要約: 混合協調競合型マルチエージェント強化学習に基づく最小限の捕食者・捕食者共進化フレームワークを提案する。
驚くべきことに、我々のこのアプローチの分析は、獲物と捕食者の両方にとって予期せぬほど多様な行動を示す。
- 参考スコア(独自算出の注目度): 22.69193229479221
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The comprehension of how local interactions arise in global collective
behavior is of utmost importance in both biological and physical research.
Traditional agent-based models often rely on static rules that fail to capture
the dynamic strategies of the biological world. Reinforcement learning has been
proposed as a solution, but most previous methods adopt handcrafted reward
functions that implicitly or explicitly encourage the emergence of swarming
behaviors. In this study, we propose a minimal predator-prey coevolution
framework based on mixed cooperative-competitive multiagent reinforcement
learning, and adopt a reward function that is solely based on the fundamental
survival pressure, that is, prey receive a reward of $-1$ if caught by
predators while predators receive a reward of $+1$. Surprisingly, our analysis
of this approach reveals an unexpectedly rich diversity of emergent behaviors
for both prey and predators, including flocking and swirling behaviors for
prey, as well as dispersion tactics, confusion, and marginal predation
phenomena for predators. Overall, our study provides novel insights into the
collective behavior of organisms and highlights the potential applications in
swarm robotics.
- Abstract(参考訳): グローバルな集団行動における局所的な相互作用の理解は、生物学的および物理的研究において最も重要である。
従来のエージェントベースのモデルは、しばしば生物学的世界の動的な戦略を捉えない静的なルールに依存している。
強化学習は解法として提案されてきたが,従来の手法では,群れ行動の出現を暗黙的にあるいは明示的に促進する手作りの報酬関数が採用されていた。
本研究では,協調競争型マルチエージェント強化学習に基づく最小の捕食者-捕食者共進化フレームワークを提案し,捕食者が10000ドルの報酬を受けながら,捕食者によって捕獲された場合,獲物に1ドルの報酬が与えられるような生存圧のみに基づく報酬関数を採用する。
驚くべきことに、このアプローチの分析により、獲物の群集行動や渦巻き行動、捕食者に対する分散戦術、混乱、限界捕食現象など、獲物と捕食者の両方にとって予期せぬほど豊かな創発的行動の多様性が明らかになった。
全体として、本研究は生物の集団行動に関する新たな知見を提供し、swarm roboticsの潜在的な応用を強調する。
関連論文リスト
- Emergent Collective Reproduction via Evolving Neuronal Flocks [0.0]
この研究は、VitaNovaという新しい人工生命の枠組みを通じて、個人性(ETI)の進化的遷移の理解を促進する。
VitaNovaは複雑に自己組織化と自然選択を融合させ、複雑な生殖群の出現をシミュレートする。
論文 参考訳(メタデータ) (2024-09-20T06:22:24Z) - Leveraging Human Feedback to Evolve and Discover Novel Emergent
Behaviors in Robot Swarms [14.404339094377319]
我々は、人間の入力を活用して、特定のマルチエージェントシステムから現れる可能性のある集団行動の分類を自動で発見することを目指している。
提案手法は,Swarm集団行動に対する類似性空間を学習することにより,ユーザの嗜好に適応する。
我々は,2つのロボット能力モデルを用いたシミュレーションにおいて,本手法が従来よりも豊かな創発的行動の集合を常に発見できることを検証した。
論文 参考訳(メタデータ) (2023-04-25T15:18:06Z) - Predicting the long-term collective behaviour of fish pairs with deep learning [52.83927369492564]
本研究では,魚種Hemigrammus rhodostomusの社会的相互作用を評価するための深層学習モデルを提案する。
我々は、ディープラーニングのアプローチの結果と実験結果と、最先端の分析モデルの結果を比較した。
機械学習モデルにより、ソーシャルインタラクションは、微妙な実験的観測可能な解析的相互作用と直接競合できることを実証する。
論文 参考訳(メタデータ) (2023-02-14T05:25:03Z) - Learning Complex Spatial Behaviours in ABM: An Experimental
Observational Study [0.0]
本稿では,創発的エージェント行動の生成にReinforcement Learningを適用する方法について検討する。
一連のシミュレーションを行ない, エージェントが実世界の知的適応行動の特性を示す方法として, プロクサマルポリシー最適化アルゴリズムを用いて訓練されたことを実証した。
論文 参考訳(メタデータ) (2022-01-04T11:56:11Z) - Information is Power: Intrinsic Control via Information Capture [110.3143711650806]
我々は,潜時状態空間モデルを用いて推定したエージェントの状態訪問のエントロピーを最小化する,コンパクトで汎用的な学習目的を論じる。
この目的は、不確実性の低減に対応する環境情報収集と、将来の世界状態の予測不可能性の低減に対応する環境制御の両方をエージェントに誘導する。
論文 参考訳(メタデータ) (2021-12-07T18:50:42Z) - Development of collective behavior in newborn artificial agents [0.0]
我々は、深層強化学習と好奇心駆動学習を用いて、集団行動を発達させる新しい人工エージェントを構築する。
我々のエージェントは、本質的なモチベーション(好奇心)のみを用いて、外部の報酬なしに集団行動を学ぶ。
この研究は、高次元の感覚入力と集団行動の分離を橋渡しし、その結果、集合動物の行動のピクセル間相互作用モデルをもたらす。
論文 参考訳(メタデータ) (2021-11-06T03:46:31Z) - Adversarial Visual Robustness by Causal Intervention [56.766342028800445]
敵の訓練は、敵の例に対する事実上最も有望な防御である。
しかし、その受動性は必然的に未知の攻撃者への免疫を妨げる。
我々は、敵対的脆弱性の因果的視点を提供する: 原因は、学習に普遍的に存在する共同創設者である。
論文 参考訳(メタデータ) (2021-06-17T14:23:54Z) - Generative Adversarial Reward Learning for Generalized Behavior Tendency
Inference [71.11416263370823]
ユーザの行動嗜好モデルのための生成的逆強化学習を提案する。
我々のモデルは,差別的アクター批判ネットワークとWasserstein GANに基づいて,ユーザの行動から報酬を自動的に学習することができる。
論文 参考訳(メタデータ) (2021-05-03T13:14:25Z) - To mock a Mocking bird : Studies in Biomimicry [0.342658286826597]
本稿では,バイオミミクリーにおけるゲーム理論の新たな研究について述べる。
このモデルを用いて,事前情報ゼロのマルチアームバンディット捕食者が生態系に導入される状況を研究する。
論文 参考訳(メタデータ) (2021-04-26T09:55:40Z) - Learning to Incentivize Other Learning Agents [73.03133692589532]
我々は、学習インセンティブ関数を用いて、RLエージェントに他のエージェントに直接報酬を与える能力を持たせる方法を示す。
このようなエージェントは、一般的なマルコフゲームにおいて、標準のRLと対戦型エージェントを著しく上回っている。
私たちの仕事は、マルチエージェントの未来において共通の善を確実にする道のりに沿って、より多くの機会と課題を指しています。
論文 参考訳(メタデータ) (2020-06-10T20:12:38Z) - Intrinsic Motivation for Encouraging Synergistic Behavior [55.10275467562764]
スパース・リワード・シナジスティック・タスクにおける強化学習の探索バイアスとしての本質的モチベーションの役割について検討した。
私たちのキーとなる考え方は、シナジスティックなタスクにおける本質的なモチベーションのための優れた指針は、エージェントが自分自身で行動している場合、達成できない方法で世界に影響を与える行動を取ることである。
論文 参考訳(メタデータ) (2020-02-12T19:34:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。