論文の概要: Development of collective behavior in newborn artificial agents
- arxiv url: http://arxiv.org/abs/2111.03796v1
- Date: Sat, 6 Nov 2021 03:46:31 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-11 05:35:09.611687
- Title: Development of collective behavior in newborn artificial agents
- Title(参考訳): 新生児人工エージェントにおける集団行動の発達
- Authors: Donsuk Lee, Samantha M. W. Wood, Justin N. Wood
- Abstract要約: 我々は、深層強化学習と好奇心駆動学習を用いて、集団行動を発達させる新しい人工エージェントを構築する。
我々のエージェントは、本質的なモチベーション(好奇心)のみを用いて、外部の報酬なしに集団行動を学ぶ。
この研究は、高次元の感覚入力と集団行動の分離を橋渡しし、その結果、集合動物の行動のピクセル間相互作用モデルをもたらす。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Collective behavior is widespread across the animal kingdom. To date,
however, the developmental and mechanistic foundations of collective behavior
have not been formally established. What learning mechanisms drive the
development of collective behavior in newborn animals? Here, we used deep
reinforcement learning and curiosity-driven learning -- two learning mechanisms
deeply rooted in psychological and neuroscientific research -- to build newborn
artificial agents that develop collective behavior. Like newborn animals, our
agents learn collective behavior from raw sensory inputs in naturalistic
environments. Our agents also learn collective behavior without external
rewards, using only intrinsic motivation (curiosity) to drive learning.
Specifically, when we raise our artificial agents in natural visual
environments with groupmates, the agents spontaneously develop ego-motion,
object recognition, and a preference for groupmates, rapidly learning all of
the core skills required for collective behavior. This work bridges the divide
between high-dimensional sensory inputs and collective action, resulting in a
pixels-to-actions model of collective animal behavior. More generally, we show
that two generic learning mechanisms -- deep reinforcement learning and
curiosity-driven learning -- are sufficient to learn collective behavior from
unsupervised natural experience.
- Abstract(参考訳): 集団行動は動物界に広がっている。
しかし、今日まで集団行動の発達的および機械的な基礎は正式に確立されていない。
新生児における集団行動の発達を促す学習メカニズムは何か?
ここでは、深層強化学習と好奇心駆動学習(心理的および神経科学的研究に深く根ざした2つの学習メカニズム)を使用して、集団行動を発展させる新生児人工エージェントを構築しました。
生まれたばかりの動物と同じように、我々のエージェントは自然環境における生の感覚入力から集団行動を学ぶ。
エージェントはまた、学習を促進するために本質的なモチベーション(好奇心)のみを使用して、外部の報酬なしで集団行動を学ぶ。
具体的には、グループメートとの自然な視覚環境で人工エージェントを育てたとき、エージェントは自発的にエゴモーション、オブジェクト認識、グループメートに対する好みを発達させ、集団行動に必要なすべてのコアスキルを迅速に学習します。
この研究は、高次元の感覚入力と集団行動の分離を橋渡しし、その結果、集合動物の行動のピクセル間相互作用モデルをもたらす。
より一般的には、深い強化学習と好奇心駆動学習という2つの一般的な学習メカニズムが、教師なしの自然経験から集合行動を学ぶのに十分であることを示す。
関連論文リスト
- The Role of Higher-Order Cognitive Models in Active Learning [8.847360368647752]
我々は、人間のフィードバックのためのアクティブな学習のための新しいパラダイムを提唱する。
エージェントのレベルが上がると、アクティブな学習システムと教師との合理的コミュニケーションの質的に異なる形態がもたらされるかについて議論する。
論文 参考訳(メタデータ) (2024-01-09T07:39:36Z) - Predator-prey survival pressure is sufficient to evolve swarming
behaviors [22.69193229479221]
混合協調競合型マルチエージェント強化学習に基づく最小限の捕食者・捕食者共進化フレームワークを提案する。
驚くべきことに、我々のこのアプローチの分析は、獲物と捕食者の両方にとって予期せぬほど多様な行動を示す。
論文 参考訳(メタデータ) (2023-08-24T08:03:11Z) - Developmental Curiosity and Social Interaction in Virtual Agents [2.8894038270224858]
我々は、仮想幼児エージェントを作成し、外部の報酬を伴わずに、発達にインスパイアされた3D環境に配置する。
我々は、人間の探索を促進するために提案されたモチベーションに類似した本質的な報酬関数をテストする。
注意深い介護者の存在下で世界モデルを学ぶことは、幼児エージェントがシナリオを予測する方法を学ぶのに役立ちます。
論文 参考訳(メタデータ) (2023-05-22T18:17:07Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
本研究は,手順を段階的に学習する認知エージェントを提案する。
各サブステージで必要とされる認知機能と, エージェントが未解決の課題に, 新たな機能の追加がどう対処するかを示す。
結果は、このアプローチが複雑なタスクを段階的に解くことができることを示している。
論文 参考訳(メタデータ) (2023-04-30T22:51:31Z) - Learning Goal-based Movement via Motivational-based Models in Cognitive
Mobile Robots [58.720142291102135]
人間は、強さと文脈に応じて行動を促進する必要がある。
また、各行動の知覚的快楽に関連する嗜好も作り出します。
これにより、意思決定がより複雑になり、コンテキストに応じてニーズと嗜好のバランスを取ることが求められます。
論文 参考訳(メタデータ) (2023-02-20T04:52:24Z) - Predicting the long-term collective behaviour of fish pairs with deep learning [52.83927369492564]
本研究では,魚種Hemigrammus rhodostomusの社会的相互作用を評価するための深層学習モデルを提案する。
我々は、ディープラーニングのアプローチの結果と実験結果と、最先端の分析モデルの結果を比較した。
機械学習モデルにより、ソーシャルインタラクションは、微妙な実験的観測可能な解析的相互作用と直接競合できることを実証する。
論文 参考訳(メタデータ) (2023-02-14T05:25:03Z) - Intrinsically Motivated Learning of Causal World Models [0.0]
有望な方向は、センサーと環境との相互作用の裏に隠された真の物理的なメカニズムを捉えた世界モデルを構築することである。
環境の因果構造を推定することは、適切な介入データを収集する手段として、適切なチョーセン行動の恩恵を受けることができる。
論文 参考訳(メタデータ) (2022-08-09T16:48:28Z) - From Psychological Curiosity to Artificial Curiosity: Curiosity-Driven
Learning in Artificial Intelligence Tasks [56.20123080771364]
心理学的好奇心は、探索と情報取得を通じて学習を強化するために、人間の知性において重要な役割を果たす。
人工知能(AI)コミュニティでは、人工好奇心は効率的な学習に自然な本質的な動機を与える。
CDLはますます人気を博し、エージェントは新たな知識を学習するために自己動機付けされている。
論文 参考訳(メタデータ) (2022-01-20T17:07:03Z) - Backprop-Free Reinforcement Learning with Active Neural Generative
Coding [84.11376568625353]
動的環境におけるエラー(バックプロップ)のバックプロパゲーションを伴わない行動駆動型生成モデルの学習のための計算フレームワークを提案する。
我々は、まばらな報酬でも機能するインテリジェントエージェントを開発し、推論として計画の認知理論からインスピレーションを得ている。
我々のエージェントの堅牢な性能は、神経推論と学習のためのバックプロップフリーアプローチがゴール指向の行動を促進するという有望な証拠を提供する。
論文 参考訳(メタデータ) (2021-07-10T19:02:27Z) - Deep reinforcement learning models the emergent dynamics of human
cooperation [13.425401489679583]
実験では、社会的認知メカニズムが集団行動の場所と時期にどのように貢献するかを明かすことができなかった。
我々は,多エージェントの深層強化学習を活用し,社会認知メカニズム,特に,評価の高い集団行動を達成するための本質的な動機をモデル化する。
論文 参考訳(メタデータ) (2021-03-08T18:58:40Z) - AGENT: A Benchmark for Core Psychological Reasoning [60.35621718321559]
直観心理学は、観察可能な行動を駆動する隠された精神変数を推論する能力です。
他のエージェントを推論する機械エージェントに対する近年の関心にもかかわらず、そのようなエージェントが人間の推論を駆動するコア心理学の原則を学ぶか保持するかは明らかではない。
本稿では,プロシージャが生成する3dアニメーション,エージェントを4つのシナリオで構成したベンチマークを提案する。
論文 参考訳(メタデータ) (2021-02-24T14:58:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。