From Chatter to Matter: Addressing Critical Steps of Emotion Recognition
Learning in Task-oriented Dialogue
- URL: http://arxiv.org/abs/2308.12648v1
- Date: Thu, 24 Aug 2023 08:46:30 GMT
- Title: From Chatter to Matter: Addressing Critical Steps of Emotion Recognition
Learning in Task-oriented Dialogue
- Authors: Shutong Feng, Nurul Lubis, Benjamin Ruppik, Christian Geishauser,
Michael Heck, Hsien-chin Lin, Carel van Niekerk, Renato Vukovic, Milica
Ga\v{s}i\'c
- Abstract summary: We propose a framework that turns a chit-chat ERC model into a task-oriented one.
We use dialogue states as auxiliary features to incorporate key information from the goal of the user.
Our framework yields significant improvements for a range of chit-chat ERC models on EmoWOZ.
- Score: 6.918298428336528
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Emotion recognition in conversations (ERC) is a crucial task for building
human-like conversational agents. While substantial efforts have been devoted
to ERC for chit-chat dialogues, the task-oriented counterpart is largely left
unattended. Directly applying chit-chat ERC models to task-oriented dialogues
(ToDs) results in suboptimal performance as these models overlook key features
such as the correlation between emotions and task completion in ToDs. In this
paper, we propose a framework that turns a chit-chat ERC model into a
task-oriented one, addressing three critical aspects: data, features and
objective. First, we devise two ways of augmenting rare emotions to improve ERC
performance. Second, we use dialogue states as auxiliary features to
incorporate key information from the goal of the user. Lastly, we leverage a
multi-aspect emotion definition in ToDs to devise a multi-task learning
objective and a novel emotion-distance weighted loss function. Our framework
yields significant improvements for a range of chit-chat ERC models on EmoWOZ,
a large-scale dataset for user emotion in ToDs. We further investigate the
generalisability of the best resulting model to predict user satisfaction in
different ToD datasets. A comparison with supervised baselines shows a strong
zero-shot capability, highlighting the potential usage of our framework in
wider scenarios.
Related papers
- InstructERC: Reforming Emotion Recognition in Conversation with Multi-task Retrieval-Augmented Large Language Models [9.611864685207056]
We propose a novel approach, InstructERC, to reformulate the emotion recognition task from a discriminative framework to a generative framework based on Large Language Models (LLMs)
InstructERC makes three significant contributions: (1) it introduces a simple yet effective retrieval template module, which helps the model explicitly integrate multi-granularity dialogue supervision information; (2) we introduce two additional emotion alignment tasks, namely speaker identification and emotion prediction tasks, to implicitly model the dialogue role relationships and future emotional tendencies in conversations; and (3) Pioneeringly, we unify emotion labels across benchmarks through the feeling wheel to fit real application scenarios.
arXiv Detail & Related papers (2023-09-21T09:22:07Z) - Dialogue Agents 101: A Beginner's Guide to Critical Ingredients for Designing Effective Conversational Systems [29.394466123216258]
This study provides a comprehensive overview of the primary characteristics of a dialogue agent, their corresponding open-domain datasets, and the methods used to benchmark these datasets.
We propose UNIT, a UNified dIalogue dataseT constructed from conversations of existing datasets for different dialogue tasks capturing the nuances for each of them.
arXiv Detail & Related papers (2023-07-14T10:05:47Z) - DiPlomat: A Dialogue Dataset for Situated Pragmatic Reasoning [89.92601337474954]
Pragmatic reasoning plays a pivotal role in deciphering implicit meanings that frequently arise in real-life conversations.
We introduce a novel challenge, DiPlomat, aiming at benchmarking machines' capabilities on pragmatic reasoning and situated conversational understanding.
arXiv Detail & Related papers (2023-06-15T10:41:23Z) - JARVIS: A Neuro-Symbolic Commonsense Reasoning Framework for
Conversational Embodied Agents [14.70666899147632]
We propose a Neuro-Symbolic Commonsense Reasoning framework for modular, generalizable, and interpretable conversational embodied agents.
Our framework achieves state-of-the-art (SOTA) results on all three dialog-based embodied tasks, including Execution from Dialog History (EDH), Trajectory from Dialog (TfD), and Two-Agent Task Completion (TATC)
Our model ranks first in the Alexa Prize SimBot Public Benchmark Challenge.
arXiv Detail & Related papers (2022-08-28T18:30:46Z) - DialogZoo: Large-Scale Dialog-Oriented Task Learning [52.18193690394549]
We aim to build a unified foundation model which can solve massive diverse dialogue tasks.
To achieve this goal, we first collect a large-scale well-labeled dialogue dataset from 73 publicly available datasets.
arXiv Detail & Related papers (2022-05-25T11:17:16Z) - A Chit-Chats Enhanced Task-Oriented Dialogue Corpora for Fuse-Motive
Conversation Systems [9.541995537438394]
We release a multi-turn dialogues dataset called CCET (Chinese Chat-Enhanced-Task)
We propose a line of fuse-motive dialogues formalization approach, along with several evaluation metrics for TOD sessions that are integrated by CC utterances.
arXiv Detail & Related papers (2022-05-12T05:43:18Z) - KETOD: Knowledge-Enriched Task-Oriented Dialogue [77.59814785157877]
Existing studies in dialogue system research mostly treat task-oriented dialogue and chit-chat as separate domains.
We investigate how task-oriented dialogue and knowledge-grounded chit-chat can be effectively integrated into a single model.
arXiv Detail & Related papers (2022-05-11T16:01:03Z) - TOD-DA: Towards Boosting the Robustness of Task-oriented Dialogue
Modeling on Spoken Conversations [24.245354500835465]
We propose a novel model-agnostic data augmentation paradigm to boost the robustness of task-oriented dialogue modeling on spoken conversations.
Our approach ranked first in both tasks of DSTC10 Track2, a benchmark for task-oriented dialogue modeling on spoken conversations.
arXiv Detail & Related papers (2021-12-23T10:04:25Z) - RADDLE: An Evaluation Benchmark and Analysis Platform for Robust
Task-oriented Dialog Systems [75.87418236410296]
We introduce the RADDLE benchmark, a collection of corpora and tools for evaluating the performance of models across a diverse set of domains.
RADDLE is designed to favor and encourage models with a strong generalization ability.
We evaluate recent state-of-the-art systems based on pre-training and fine-tuning, and find that grounded pre-training on heterogeneous dialog corpora performs better than training a separate model per domain.
arXiv Detail & Related papers (2020-12-29T08:58:49Z) - Exploiting Unsupervised Data for Emotion Recognition in Conversations [76.01690906995286]
Emotion Recognition in Conversations (ERC) aims to predict the emotional state of speakers in conversations.
The available supervised data for the ERC task is limited.
We propose a novel approach to leverage unsupervised conversation data.
arXiv Detail & Related papers (2020-10-02T13:28:47Z) - TOD-BERT: Pre-trained Natural Language Understanding for Task-Oriented
Dialogue [113.45485470103762]
In this work, we unify nine human-human and multi-turn task-oriented dialogue datasets for language modeling.
To better model dialogue behavior during pre-training, we incorporate user and system tokens into the masked language modeling.
arXiv Detail & Related papers (2020-04-15T04:09:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.