論文の概要: Actuator Trajectory Planning for UAVs with Overhead Manipulator using
Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2308.12843v2
- Date: Fri, 25 Aug 2023 16:28:12 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-28 11:12:18.755261
- Title: Actuator Trajectory Planning for UAVs with Overhead Manipulator using
Reinforcement Learning
- Title(参考訳): 強化学習を用いた頭上マニピュレータを有するuavのアクチュエータ軌道計画
- Authors: Hazim Alzorgan, Abolfazl Razi, Ata Jahangir Moshayedi
- Abstract要約: 制御可能なアームを備えたUAVを2自由度で開発し、飛行中に作動作業を行う。
我々のソリューションは、腕の先端の軌跡を制御するためのQ-learning法(End-effector)を用いています。
提案手法は,15,000エピソードのQ-ラーニングを用いて,平均変位誤差の92%の精度を実現する。
- 参考スコア(独自算出の注目度): 0.3222802562733786
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we investigate the operation of an aerial manipulator system,
namely an Unmanned Aerial Vehicle (UAV) equipped with a controllable arm with
two degrees of freedom to carry out actuation tasks on the fly. Our solution is
based on employing a Q-learning method to control the trajectory of the tip of
the arm, also called end-effector. More specifically, we develop a motion
planning model based on Time To Collision (TTC), which enables a quadrotor UAV
to navigate around obstacles while ensuring the manipulator's reachability.
Additionally, we utilize a model-based Q-learning model to independently track
and control the desired trajectory of the manipulator's end-effector, given an
arbitrary baseline trajectory for the UAV platform. Such a combination enables
a variety of actuation tasks such as high-altitude welding, structural
monitoring and repair, battery replacement, gutter cleaning, skyscrapper
cleaning, and power line maintenance in hard-to-reach and risky environments
while retaining compatibility with flight control firmware. Our RL-based
control mechanism results in a robust control strategy that can handle
uncertainties in the motion of the UAV, offering promising performance.
Specifically, our method achieves 92% accuracy in terms of average displacement
error (i.e. the mean distance between the target and obtained trajectory
points) using Q-learning with 15,000 episodes
- Abstract(参考訳): 本稿では,無人航空機 (UAV) に自由度2自由度を有する制御可能なアームを装着し, 飛行時の作動作業を行う航空マニピュレータシステムの運用について検討する。
我々のソリューションは、腕の先端の軌跡を制御するためのQ-learning法(End-effector)を用いています。
具体的には,TTC(Time To Collision)に基づく動作計画モデルを構築し,マニピュレータの到達性を確保しつつ障害物を回避できる。
さらに,UAVプラットフォームに対する任意のベースライン軌跡を与えられたマニピュレータのエンドエフェクタの所望の軌道を,モデルベースQ学習モデルを用いて独立に追跡・制御する。
このような組み合わせにより、飛行制御ファームウェアとの互換性を維持しつつ、高高度溶接、構造監視および修理、電池交換、ガークリーニング、スカイスクラッパークリーニング、および難航・危険環境における電力線維持といった様々な作動作業が可能になる。
我々のRL制御機構は、UAVの動作の不確実性に対処し、有望な性能を提供する堅牢な制御戦略をもたらす。
具体的には, 15,000エピソードのq-learningを用いて, 平均変位誤差(すなわち, 目標と得られた軌道点の平均距離)の92%の精度を達成する。
関連論文リスト
- Reaching the Limit in Autonomous Racing: Optimal Control versus
Reinforcement Learning [66.10854214036605]
ロボット工学における中心的な問題は、アジャイルなモバイルロボットの制御システムをどうやって設計するかである。
本稿では、強化学習(RL)で訓練されたニューラルネットワークコントローラが最適制御(OC)法より優れていることを示す。
その結果、アジャイルドローンを最大性能に押し上げることができ、最大加速速度は重力加速度の12倍以上、ピーク速度は時速108kmに達しました。
論文 参考訳(メタデータ) (2023-10-17T02:40:27Z) - Toward collision-free trajectory for autonomous and pilot-controlled
unmanned aerial vehicles [1.018017727755629]
本研究は、高度衝突管理手法の開発において、PilotAware Ltdが入手した電子情報(EC)をより活用するものである。
DACM手法の利点は、空中衝突を避けるための広範囲なシミュレーションと実世界のフィールドテストによって実証されてきた。
論文 参考訳(メタデータ) (2023-09-18T18:24:31Z) - Convergence of Communications, Control, and Machine Learning for Secure
and Autonomous Vehicle Navigation [78.60496411542549]
接続された自動運転車(CAV)は、交通事故におけるヒューマンエラーを低減し、道路効率を向上し、様々なタスクを実行する。これらのメリットを享受するためには、CAVが目標とする目的地へ自律的にナビゲートする必要がある。
本稿では,通信理論,制御理論,機械学習の収束を利用して,効果的なCAVナビゲーションを実現する手法を提案する。
論文 参考訳(メタデータ) (2023-07-05T21:38:36Z) - Designing a Robust Low-Level Agnostic Controller for a Quadrotor with
Actor-Critic Reinforcement Learning [0.38073142980732994]
ソフトアクター・クリティカルに基づく低レベルウェイポイント誘導制御器の訓練段階におけるドメインランダム化を提案する。
トレーニング中の四元数力学に一定の不確実性を導入することにより、より大規模な四元数パラメータを用いて提案課題を実行することができる制御器が得られることを示す。
論文 参考訳(メタデータ) (2022-10-06T14:58:19Z) - Obstacle Avoidance for UAS in Continuous Action Space Using Deep
Reinforcement Learning [9.891207216312937]
小型無人航空機の障害物回避は将来の都市空輸の安全に不可欠である。
本稿では, PPO(Proximal Policy Optimization)に基づく深層強化学習アルゴリズムを提案する。
その結果,提案モデルが正確かつ堅牢なガイダンスを提供し,99%以上の成功率で競合を解消できることが示唆された。
論文 参考訳(メタデータ) (2021-11-13T04:44:53Z) - Data-Efficient Deep Reinforcement Learning for Attitude Control of
Fixed-Wing UAVs: Field Experiments [0.37798600249187286]
DRLは、元の非線形力学を直接操作する固定翼UAVの姿勢制御をうまく学べることを示す。
我々は,UAVで学習したコントローラを飛行試験で展開し,最先端のArduPlane比例積分微分(PID)姿勢制御と同等の性能を示す。
論文 参考訳(メタデータ) (2021-11-07T19:07:46Z) - OSCAR: Data-Driven Operational Space Control for Adaptive and Robust
Robot Manipulation [50.59541802645156]
オペレーショナル・スペース・コントロール(OSC)は、操作のための効果的なタスクスペース・コントローラとして使われてきた。
本稿では,データ駆動型OSCのモデル誤差を補償するOSC for Adaptation and Robustness (OSCAR)を提案する。
本手法は,様々なシミュレーション操作問題に対して評価し,制御器のベースラインの配列よりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2021-10-02T01:21:38Z) - Towards Safe Control of Continuum Manipulator Using Shielded Multiagent
Reinforcement Learning [1.2647816797166165]
ロボットの制御は、MADQNフレームワークにおける1つのエージェント問題である1-DoFとして定式化され、学習効率が向上する。
シールドされたMADQNにより、ロボットは外部負荷下で、サブミリ単位のルート平均二乗誤差で点と軌道追跡を行うことができた。
論文 参考訳(メタデータ) (2021-06-15T05:55:05Z) - 3D UAV Trajectory and Data Collection Optimisation via Deep
Reinforcement Learning [75.78929539923749]
無人航空機(UAV)は現在、無線通信におけるネットワーク性能とカバレッジを高めるために配備され始めている。
UAV支援モノのインターネット(IoT)のための最適な資源配分方式を得ることは困難である
本稿では,UAVの最も短い飛行経路に依存しつつ,IoTデバイスから収集したデータ量を最大化しながら,新しいUAV支援IoTシステムを設計する。
論文 参考訳(メタデータ) (2021-06-06T14:08:41Z) - Transferable Deep Reinforcement Learning Framework for Autonomous
Vehicles with Joint Radar-Data Communications [69.24726496448713]
本稿では,AVの最適決定を支援するために,マルコフ決定プロセス(MDP)に基づくインテリジェントな最適化フレームワークを提案する。
そこで我々は,近年の深層強化学習技術を活用した効果的な学習アルゴリズムを開発し,AVの最適方針を見出す。
提案手法は,従来の深部強化学習手法と比較して,AVによる障害物ミス検出確率を最大67%削減することを示す。
論文 参考訳(メタデータ) (2021-05-28T08:45:37Z) - Efficient UAV Trajectory-Planning using Economic Reinforcement Learning [65.91405908268662]
UAV間でタスクを分散するための経済取引に触発された新しい強化学習アルゴリズムであるREPlannerを紹介します。
エージェントが協力し、リソースを競うことができるマルチエージェント経済ゲームとして、パス計画問題を策定します。
UAV協力によるタスク分布の計算を行うため、Swarmサイズの変化に対して非常に耐性が高い。
論文 参考訳(メタデータ) (2021-03-03T20:54:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。