論文の概要: Probabilistic load forecasting with Reservoir Computing
- arxiv url: http://arxiv.org/abs/2308.12844v1
- Date: Thu, 24 Aug 2023 15:07:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-25 13:36:26.517891
- Title: Probabilistic load forecasting with Reservoir Computing
- Title(参考訳): 貯留層計算による確率的負荷予測
- Authors: Michele Guerra, Simone Scardapane, Filippo Maria Bianchi
- Abstract要約: 本研究は,コア時系列予測手法としての貯水池計算に焦点を当てた。
RC文献は主に点予測に重点を置いているが、この研究は一般的な不確実性定量法と貯水池の設定との整合性を探究するものである。
- 参考スコア(独自算出の注目度): 10.214379018902914
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Some applications of deep learning require not only to provide accurate
results but also to quantify the amount of confidence in their prediction. The
management of an electric power grid is one of these cases: to avoid risky
scenarios, decision-makers need both precise and reliable forecasts of, for
example, power loads. For this reason, point forecasts are not enough hence it
is necessary to adopt methods that provide an uncertainty quantification.
This work focuses on reservoir computing as the core time series forecasting
method, due to its computational efficiency and effectiveness in predicting
time series. While the RC literature mostly focused on point forecasting, this
work explores the compatibility of some popular uncertainty quantification
methods with the reservoir setting. Both Bayesian and deterministic approaches
to uncertainty assessment are evaluated and compared in terms of their
prediction accuracy, computational resource efficiency and reliability of the
estimated uncertainty, based on a set of carefully chosen performance metrics.
- Abstract(参考訳): ディープラーニングのいくつかの応用は、正確な結果を提供するだけでなく、予測に対する信頼度を定量化する必要がある。
リスクのあるシナリオを避けるために、意思決定者は、例えば電力負荷の正確な予測と信頼性の高い予測の両方を必要とします。
このため、点予測は不十分であるため、不確実な定量化を提供する方法を採用する必要がある。
本研究は, その計算効率と予測時系列の有効性から, コア時系列予測手法としての貯水池計算に焦点をあてる。
rc文献は主にポイント予測に焦点をあてているが、本研究は貯水池設定と一般的な不確実性定量化手法の適合性を探るものである。
不確実性評価に対するベイズ的アプローチと決定論的アプローチの両方を、慎重に選択された性能指標に基づいて、予測精度、計算資源効率、推定不確実性の信頼性の観点から評価し比較する。
関連論文リスト
- Score Matching-based Pseudolikelihood Estimation of Neural Marked
Spatio-Temporal Point Process with Uncertainty Quantification [59.81904428056924]
我々は、不確実な定量化を伴うmarkPsを学習するためのスコアMAtching推定器であるSMASHを紹介する。
具体的には,スコアマッチングによるマークPsの擬似的類似度を推定することにより,正規化自由度を推定する。
提案手法の優れた性能は、事象予測と不確実性定量化の両方において広範な実験によって実証される。
論文 参考訳(メタデータ) (2023-10-25T02:37:51Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
本稿では,データあいまいさの予測不確実性を推定するためのポストホックサンプリング手法を提案する。
この方法は与えられた入力に対して異なる可算出力を生成することができ、予測分布のパラメトリック形式を仮定しない。
論文 参考訳(メタデータ) (2023-08-03T12:43:21Z) - Fast Uncertainty Estimates in Deep Learning Interatomic Potentials [0.0]
本研究では,単一ニューラルネットワークを用いて,アンサンブルを必要とせずに予測不確実性を推定する手法を提案する。
本研究では,不確実性の推定値の品質が深層アンサンブルから得られた値と一致することを示す。
論文 参考訳(メタデータ) (2022-11-17T20:13:39Z) - Comparison of Uncertainty Quantification with Deep Learning in Time
Series Regression [7.6146285961466]
本稿では,気象時系列データと異なる不確実性推定手法を比較した。
その結果,各不確実性推定手法が予測タスクに与える影響が示された。
論文 参考訳(メタデータ) (2022-11-11T14:29:13Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
動的トラフィックシナリオでは、決定論的予測に基づく計画は信頼できない。
著者らは、決定論的アプローチが捉えられない近似を用いて予測中の不確実性を定量化する。
将来の状態の不確実性に対する降雨重量と長期予測の影響について検討した。
論文 参考訳(メタデータ) (2022-05-04T04:23:38Z) - Evaluation of Machine Learning Techniques for Forecast Uncertainty
Quantification [0.13999481573773068]
アンサンブル予測は、これまでのところ、関連する予測を生成するための最も成功したアプローチであり、その不確実性を見積もっている。
アンサンブル予測の主な制限は、高い計算コストと異なる不確実性の源を捕捉し定量化することの難しさである。
本研究は,1つの決定論的予測のみを入力として,システムの修正状態と状態不確かさを予測するために訓練されたANNの性能を評価するための概念モデル実験である。
論文 参考訳(メタデータ) (2021-11-29T16:52:17Z) - Dense Uncertainty Estimation [62.23555922631451]
本稿では,ニューラルネットワークと不確実性推定手法について検討し,正確な決定論的予測と確実性推定の両方を実現する。
本研究では,アンサンブルに基づく手法と生成モデルに基づく手法の2つの不確実性推定法について検討し,それらの長所と短所を,完全/半端/弱度に制御されたフレームワークを用いて説明する。
論文 参考訳(メタデータ) (2021-10-13T01:23:48Z) - Learning Uncertainty For Safety-Oriented Semantic Segmentation In
Autonomous Driving [77.39239190539871]
自律運転における安全クリティカル画像セグメンテーションを実現するために、不確実性推定をどのように活用できるかを示す。
相似性関数によって測定された不一致予測に基づく新しい不確実性尺度を導入する。
本研究では,提案手法が競合手法よりも推論時間において計算集約性が低いことを示す。
論文 参考訳(メタデータ) (2021-05-28T09:23:05Z) - Quantifying Uncertainty in Deep Spatiotemporal Forecasting [67.77102283276409]
本稿では,正規格子法とグラフ法という2種類の予測問題について述べる。
我々はベイジアンおよび頻繁な視点からUQ法を解析し、統計的決定理論を通じて統一的な枠組みを提示する。
実際の道路ネットワークのトラフィック、疫病、空気質予測タスクに関する広範な実験を通じて、異なるUQ手法の統計計算トレードオフを明らかにする。
論文 参考訳(メタデータ) (2021-05-25T14:35:46Z) - Demand Forecasting of Individual Probability Density Functions with
Machine Learning [0.0]
本研究では,予測分布の精度を評価する新しい手法を提案する。
教師付き機械学習手法であるCyclic Boostingを用いて、各予測が完全に説明可能であるように、完全な個別確率密度関数を予測できる。
論文 参考訳(メタデータ) (2020-09-15T13:05:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。