CDAN: Convolutional Dense Attention-guided Network for Low-light Image
Enhancement
- URL: http://arxiv.org/abs/2308.12902v2
- Date: Sat, 26 Aug 2023 14:23:29 GMT
- Title: CDAN: Convolutional Dense Attention-guided Network for Low-light Image
Enhancement
- Authors: Hossein Shakibania, Sina Raoufi, Hassan Khotanlou
- Abstract summary: Low-light images pose challenges of diminished clarity, muted colors, and reduced details.
This paper introduces the Convolutional Dense Attention-guided Network (CDAN), a novel solution for enhancing low-light images.
CDAN integrates an autoencoder-based architecture with convolutional and dense blocks, complemented by an attention mechanism and skip connections.
- Score: 2.532202013576547
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Low-light images, characterized by inadequate illumination, pose challenges
of diminished clarity, muted colors, and reduced details. Low-light image
enhancement, an essential task in computer vision, aims to rectify these issues
by improving brightness, contrast, and overall perceptual quality, thereby
facilitating accurate analysis and interpretation. This paper introduces the
Convolutional Dense Attention-guided Network (CDAN), a novel solution for
enhancing low-light images. CDAN integrates an autoencoder-based architecture
with convolutional and dense blocks, complemented by an attention mechanism and
skip connections. This architecture ensures efficient information propagation
and feature learning. Furthermore, a dedicated post-processing phase refines
color balance and contrast. Our approach demonstrates notable progress compared
to state-of-the-art results in low-light image enhancement, showcasing its
robustness across a wide range of challenging scenarios. Our model performs
remarkably on benchmark datasets, effectively mitigating under-exposure and
proficiently restoring textures and colors in diverse low-light scenarios. This
achievement underscores CDAN's potential for diverse computer vision tasks,
notably enabling robust object detection and recognition in challenging
low-light conditions.
Related papers
- Semi-LLIE: Semi-supervised Contrastive Learning with Mamba-based Low-light Image Enhancement [59.17372460692809]
This work proposes a mean-teacher-based semi-supervised low-light enhancement (Semi-LLIE) framework that integrates the unpaired data into model training.
We introduce a semantic-aware contrastive loss to faithfully transfer the illumination distribution, contributing to enhancing images with natural colors.
We also propose novel perceptive loss based on the large-scale vision-language Recognize Anything Model (RAM) to help generate enhanced images with richer textual details.
arXiv Detail & Related papers (2024-09-25T04:05:32Z) - ALEN: A Dual-Approach for Uniform and Non-Uniform Low-Light Image Enhancement [6.191556429706728]
Inadequate illumination can lead to significant information loss and poor image quality, impacting various applications such as surveillance.
Current enhancement techniques often use specific datasets to enhance low-light images, but still present challenges when adapting to diverse real-world conditions.
The Adaptive Light Enhancement Network (ALEN) is introduced, whose main approach is the use of a classification mechanism to determine whether local or global illumination enhancement is required.
arXiv Detail & Related papers (2024-07-29T05:19:23Z) - DARK: Denoising, Amplification, Restoration Kit [0.7670170505111058]
This paper introduces a novel lightweight computational framework for enhancing images under low-light conditions.
Our model is designed to be lightweight, ensuring low computational demand and suitability for real-time applications on standard consumer hardware.
arXiv Detail & Related papers (2024-05-21T16:01:13Z) - CodeEnhance: A Codebook-Driven Approach for Low-Light Image Enhancement [97.95330185793358]
Low-light image enhancement (LLIE) aims to improve low-illumination images.
Existing methods face two challenges: uncertainty in restoration from diverse brightness degradations and loss of texture and color information.
We propose a novel enhancement approach, CodeEnhance, by leveraging quantized priors and image refinement.
arXiv Detail & Related papers (2024-04-08T07:34:39Z) - LDM-ISP: Enhancing Neural ISP for Low Light with Latent Diffusion Models [54.93010869546011]
We propose to leverage the pre-trained latent diffusion model to perform the neural ISP for enhancing extremely low-light images.
Specifically, to tailor the pre-trained latent diffusion model to operate on the RAW domain, we train a set of lightweight taming modules.
We observe different roles of UNet denoising and decoder reconstruction in the latent diffusion model, which inspires us to decompose the low-light image enhancement task into latent-space low-frequency content generation and decoding-phase high-frequency detail maintenance.
arXiv Detail & Related papers (2023-12-02T04:31:51Z) - Low-Light Image Enhancement with Illumination-Aware Gamma Correction and
Complete Image Modelling Network [69.96295927854042]
Low-light environments usually lead to less informative large-scale dark areas.
We propose to integrate the effectiveness of gamma correction with the strong modelling capacities of deep networks.
Because exponential operation introduces high computational complexity, we propose to use Taylor Series to approximate gamma correction.
arXiv Detail & Related papers (2023-08-16T08:46:51Z) - Division Gets Better: Learning Brightness-Aware and Detail-Sensitive
Representations for Low-Light Image Enhancement [10.899693396348171]
LCDBNet is composed of two branches, namely luminance adjustment network (LAN) and chrominance restoration network (CRN)
LAN takes responsibility for learning brightness-aware features leveraging long-range dependency and local attention correlation.
CRN concentrates on learning detail-sensitive features via multi-level wavelet decomposition.
Finally, a fusion network is designed to blend their learned features to produce visually impressive images.
arXiv Detail & Related papers (2023-07-18T09:52:48Z) - SCRNet: a Retinex Structure-based Low-light Enhancement Model Guided by
Spatial Consistency [22.54951703413469]
We present a novel low-light image enhancement model, termed Spatial Consistency Retinex Network (SCRNet)
Our proposed model incorporates three levels of consistency: channel level, semantic level, and texture level, inspired by the principle of spatial consistency.
Extensive evaluations on various low-light image datasets demonstrate that our proposed SCRNet outshines existing state-of-the-art methods.
arXiv Detail & Related papers (2023-05-14T03:32:19Z) - Diffusion in the Dark: A Diffusion Model for Low-Light Text Recognition [78.50328335703914]
Diffusion in the Dark (DiD) is a diffusion model for low-light image reconstruction for text recognition.
We demonstrate that DiD, without any task-specific optimization, can outperform SOTA low-light methods in low-light text recognition on real images.
arXiv Detail & Related papers (2023-03-07T23:52:51Z) - Degrade is Upgrade: Learning Degradation for Low-light Image Enhancement [52.49231695707198]
We investigate the intrinsic degradation and relight the low-light image while refining the details and color in two steps.
Inspired by the color image formulation, we first estimate the degradation from low-light inputs to simulate the distortion of environment illumination color, and then refine the content to recover the loss of diffuse illumination color.
Our proposed method has surpassed the SOTA by 0.95dB in PSNR on LOL1000 dataset and 3.18% in mAP on ExDark dataset.
arXiv Detail & Related papers (2021-03-19T04:00:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.