DARK: Denoising, Amplification, Restoration Kit
- URL: http://arxiv.org/abs/2405.12891v1
- Date: Tue, 21 May 2024 16:01:13 GMT
- Title: DARK: Denoising, Amplification, Restoration Kit
- Authors: Zhuoheng Li, Yuheng Pan, Houcheng Yu, Zhiheng Zhang,
- Abstract summary: This paper introduces a novel lightweight computational framework for enhancing images under low-light conditions.
Our model is designed to be lightweight, ensuring low computational demand and suitability for real-time applications on standard consumer hardware.
- Score: 0.7670170505111058
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper introduces a novel lightweight computational framework for enhancing images under low-light conditions, utilizing advanced machine learning and convolutional neural networks (CNNs). Traditional enhancement techniques often fail to adequately address issues like noise, color distortion, and detail loss in challenging lighting environments. Our approach leverages insights from the Retinex theory and recent advances in image restoration networks to develop a streamlined model that efficiently processes illumination components and integrates context-sensitive enhancements through optimized convolutional blocks. This results in significantly improved image clarity and color fidelity, while avoiding over-enhancement and unnatural color shifts. Crucially, our model is designed to be lightweight, ensuring low computational demand and suitability for real-time applications on standard consumer hardware. Performance evaluations confirm that our model not only surpasses existing methods in enhancing low-light images but also maintains a minimal computational footprint.
Related papers
- CodeEnhance: A Codebook-Driven Approach for Low-Light Image Enhancement [97.95330185793358]
Low-light image enhancement (LLIE) aims to improve low-illumination images.
Existing methods face two challenges: uncertainty in restoration from diverse brightness degradations and loss of texture and color information.
We propose a novel enhancement approach, CodeEnhance, by leveraging quantized priors and image refinement.
arXiv Detail & Related papers (2024-04-08T07:34:39Z) - DarkShot: Lighting Dark Images with Low-Compute and High-Quality [11.256790804961563]
This paper proposes a lightweight network that outperforms existing state-of-the-art (SOTA) methods in low-light enhancement tasks.
Our model can restore a UHD 4K resolution image with minimal computation while keeping SOTA restoration quality.
arXiv Detail & Related papers (2023-12-28T03:26:50Z) - LDM-ISP: Enhancing Neural ISP for Low Light with Latent Diffusion Models [54.93010869546011]
We propose to leverage the pre-trained latent diffusion model to perform the neural ISP for enhancing extremely low-light images.
Specifically, to tailor the pre-trained latent diffusion model to operate on the RAW domain, we train a set of lightweight taming modules.
We observe different roles of UNet denoising and decoder reconstruction in the latent diffusion model, which inspires us to decompose the low-light image enhancement task into latent-space low-frequency content generation and decoding-phase high-frequency detail maintenance.
arXiv Detail & Related papers (2023-12-02T04:31:51Z) - CDAN: Convolutional dense attention-guided network for low-light image enhancement [2.2530496464901106]
Low-light images pose challenges of diminished clarity, muted colors, and reduced details.
This paper introduces the Convolutional Dense Attention-guided Network (CDAN), a novel solution for enhancing low-light images.
CDAN integrates an autoencoder-based architecture with convolutional and dense blocks, complemented by an attention mechanism and skip connections.
arXiv Detail & Related papers (2023-08-24T16:22:05Z) - Low-Light Image Enhancement with Illumination-Aware Gamma Correction and
Complete Image Modelling Network [69.96295927854042]
Low-light environments usually lead to less informative large-scale dark areas.
We propose to integrate the effectiveness of gamma correction with the strong modelling capacities of deep networks.
Because exponential operation introduces high computational complexity, we propose to use Taylor Series to approximate gamma correction.
arXiv Detail & Related papers (2023-08-16T08:46:51Z) - SCRNet: a Retinex Structure-based Low-light Enhancement Model Guided by
Spatial Consistency [22.54951703413469]
We present a novel low-light image enhancement model, termed Spatial Consistency Retinex Network (SCRNet)
Our proposed model incorporates three levels of consistency: channel level, semantic level, and texture level, inspired by the principle of spatial consistency.
Extensive evaluations on various low-light image datasets demonstrate that our proposed SCRNet outshines existing state-of-the-art methods.
arXiv Detail & Related papers (2023-05-14T03:32:19Z) - Toward Fast, Flexible, and Robust Low-Light Image Enhancement [87.27326390675155]
We develop a new Self-Calibrated Illumination (SCI) learning framework for fast, flexible, and robust brightening images in real-world low-light scenarios.
Considering the computational burden of the cascaded pattern, we construct the self-calibrated module which realizes the convergence between results of each stage.
We make comprehensive explorations to SCI's inherent properties including operation-insensitive adaptability and model-irrelevant generality.
arXiv Detail & Related papers (2022-04-21T14:40:32Z) - Invertible Network for Unpaired Low-light Image Enhancement [78.33382003460903]
We propose to leverage the invertible network to enhance low-light image in forward process and degrade the normal-light one inversely with unpaired learning.
In addition to the adversarial loss, we design various loss functions to ensure the stability of training and preserve more image details.
We present a progressive self-guided enhancement process for low-light images and achieve favorable performance against the SOTAs.
arXiv Detail & Related papers (2021-12-24T17:00:54Z) - Progressive Joint Low-light Enhancement and Noise Removal for Raw Images [10.778200442212334]
Low-light imaging on mobile devices is typically challenging due to insufficient incident light coming through the relatively small aperture.
We propose a low-light image processing framework that performs joint illumination adjustment, color enhancement, and denoising.
Our framework does not need to recollect massive data when being adapted to another camera model.
arXiv Detail & Related papers (2021-06-28T16:43:52Z) - Unsupervised Low-light Image Enhancement with Decoupled Networks [103.74355338972123]
We learn a two-stage GAN-based framework to enhance the real-world low-light images in a fully unsupervised fashion.
Our proposed method outperforms the state-of-the-art unsupervised image enhancement methods in terms of both illumination enhancement and noise reduction.
arXiv Detail & Related papers (2020-05-06T13:37:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.