Efficient Long-Range Entanglement using Dynamic Circuits
- URL: http://arxiv.org/abs/2308.13065v2
- Date: Wed, 18 Sep 2024 13:15:08 GMT
- Title: Efficient Long-Range Entanglement using Dynamic Circuits
- Authors: Elisa Bäumer, Vinay Tripathi, Derek S. Wang, Patrick Rall, Edward H. Chen, Swarnadeep Majumder, Alireza Seif, Zlatko K. Minev,
- Abstract summary: We study the utility of shallow dynamic circuits for creating long-range entanglement on large-scale quantum devices.
In the former, we observe that dynamic circuits can outperform their unitary counterparts.
We provide an error budget detailing the obstacles that must be addressed to unlock the full potential of dynamic circuits.
- Score: 0.0903415485511869
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum simulation traditionally relies on unitary dynamics, inherently imposing efficiency constraints on the generation of intricate entangled states. In principle, these limitations can be superseded by non-unitary, dynamic circuits. These circuits exploit measurements alongside conditional feed-forward operations, providing a promising approach for long-range entangling gates, higher effective connectivity of near-term hardware, and more efficient state preparations. Here, we explore the utility of shallow dynamic circuits for creating long-range entanglement on large-scale quantum devices. Specifically, we study two tasks: CNOT gate teleportation between up to 101 qubits by feeding forward 99 mid-circuit measurement outcomes, and the preparation of Greenberger-Horne-Zeilinger (GHZ) states with genuine entanglement. In the former, we observe that dynamic circuits can outperform their unitary counterparts. In the latter, by tallying instructions of compiled quantum circuits, we provide an error budget detailing the obstacles that must be addressed to unlock the full potential of dynamic circuits. Looking forward, we expect dynamic circuits to be useful for generating long-range entanglement in the near term on large-scale quantum devices.
Related papers
- Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - Measurement of Many-Body Quantum Correlations in Superconducting Circuits [2.209921757303168]
We propose a probe circuit capable of reading out many-body correlations in an analog quantum simulator.
We demonstrate the capabilities of this design in the context of an LC-ladder with a quantum impurity.
arXiv Detail & Related papers (2024-06-17T17:36:36Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Overhead-constrained circuit knitting for variational quantum dynamics [0.0]
We use circuit knitting to partition a large quantum system into smaller subsystems that can each be simulated on a separate device.
We show that the same method can be used to reduce the circuit depth by cutting long-ranged gates.
arXiv Detail & Related papers (2023-09-14T17:01:06Z) - Numerical simulations of long-range open quantum many-body dynamics with
tree tensor networks [0.0]
We introduce a numerical method for open quantum systems, based on tree tensor networks.
Such a structure is expected to improve the encoding of many-body correlations.
We adopt an integration scheme suited for long-range interactions and applications to dissipative dynamics.
arXiv Detail & Related papers (2023-04-12T18:00:03Z) - Shortcuts to adiabaticity in superconducting circuits for fast
multi-partite state generation [3.8580539160777625]
We propose the reverse-engineering approach to design the longitudinal coupling between a set of qubits coupled to several field modes.
We show that the enhancing generation time is at the nanosecond scale that does not scale with the number of system components.
arXiv Detail & Related papers (2023-02-15T16:12:19Z) - Directional Josephson traveling-wave parametric amplifier via
non-Hermitian topology [58.720142291102135]
Low-noise microwave amplification is crucial for detecting weak signals in quantum technologies and radio astronomy.
Current amplifiers do not satisfy all these requirements, severely limiting the scalability of superconducting quantum devices.
Here, we demonstrate the feasibility of building a near-ideal quantum amplifier using a homogeneous Josephson junction array and the non-trivial topology of its dynamics.
arXiv Detail & Related papers (2022-07-27T18:07:20Z) - Moving beyond the transmon: Noise-protected superconducting quantum
circuits [55.49561173538925]
superconducting circuits offer opportunities to store and process quantum information with high fidelity.
Noise-protected devices constitute a new class of qubits in which the computational states are largely decoupled from local noise channels.
This Perspective reviews the theoretical principles at the heart of these new qubits, describes recent experiments, and highlights the potential of robust encoding of quantum information in superconducting qubits.
arXiv Detail & Related papers (2021-06-18T18:00:13Z) - High-fidelity geometric quantum gates with short paths on
superconducting circuits [5.666193021459319]
We propose a scheme to realize nonadiabatic geometric quantum gates with short paths based on simple pulse control techniques.
Specifically, we illustrate the idea on a superconducting quantum circuit, which is one of the most promising platforms for realizing practical quantum computer.
arXiv Detail & Related papers (2021-02-06T10:13:05Z) - Hardware-Encoding Grid States in a Non-Reciprocal Superconducting
Circuit [62.997667081978825]
We present a circuit design composed of a non-reciprocal device and Josephson junctions whose ground space is doubly degenerate and the ground states are approximate codewords of the Gottesman-Kitaev-Preskill (GKP) code.
We find that the circuit is naturally protected against the common noise channels in superconducting circuits, such as charge and flux noise, implying that it can be used for passive quantum error correction.
arXiv Detail & Related papers (2020-02-18T16:45:09Z) - Entanglement generation via power-of-SWAP operations between dynamic
electron-spin qubits [62.997667081978825]
Surface acoustic waves (SAWs) can create moving quantum dots in piezoelectric materials.
We show how electron-spin qubits located on dynamic quantum dots can be entangled.
arXiv Detail & Related papers (2020-01-15T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.