論文の概要: Full-dose PET Synthesis from Low-dose PET Using High-efficiency
Diffusion Denoising Probabilistic Model
- arxiv url: http://arxiv.org/abs/2308.13072v1
- Date: Thu, 24 Aug 2023 20:29:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-28 15:51:39.215012
- Title: Full-dose PET Synthesis from Low-dose PET Using High-efficiency
Diffusion Denoising Probabilistic Model
- Title(参考訳): 高効率拡散分解確率モデルを用いた低線量PETの全線量PET合成
- Authors: Shaoyan Pan, Elham Abouei, Junbo Peng, Joshua Qian, Jacob F Wynne,
Tonghe Wang, Chih-Wei Chang, Justin Roper, Jonathon A Nye, Hui Mao, Xiaofeng
Yang
- Abstract要約: 低線量PET画像からフル線量PET画像を推定するための拡散モデルに基づく手法を提案する。
PET-CMは、最先端拡散ベース合成モデルに匹敵する合成品質が得られる。
その結果,臨床応用における低線量PET画像の画質向上が期待できることがわかった。
- 参考スコア(独自算出の注目度): 1.863830312490763
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To reduce the risks associated with ionizing radiation, a reduction of
radiation exposure in PET imaging is needed. However, this leads to a
detrimental effect on image contrast and quantification. High-quality PET
images synthesized from low-dose data offer a solution to reduce radiation
exposure. We introduce a diffusion-model-based approach for estimating
full-dose PET images from low-dose ones: the PET Consistency Model (PET-CM)
yielding synthetic quality comparable to state-of-the-art diffusion-based
synthesis models, but with greater efficiency. There are two steps: a forward
process that adds Gaussian noise to a full dose PET image at multiple
timesteps, and a reverse diffusion process that employs a PET Shifted-window
Vision Transformer (PET-VIT) network to learn the denoising procedure
conditioned on the corresponding low-dose PETs. In PET-CM, the reverse process
learns a consistency function for direct denoising of Gaussian noise to a clean
full-dose PET. We evaluated the PET-CM in generating full-dose images using
only 1/8 and 1/4 of the standard PET dose. Comparing 1/8 dose to full-dose
images, PET-CM demonstrated impressive performance with normalized mean
absolute error (NMAE) of 1.233+/-0.131%, peak signal-to-noise ratio (PSNR) of
33.915+/-0.933dB, structural similarity index (SSIM) of 0.964+/-0.009, and
normalized cross-correlation (NCC) of 0.968+/-0.011, with an average generation
time of 62 seconds per patient. This is a significant improvement compared to
the state-of-the-art diffusion-based model with PET-CM reaching this result 12x
faster. In the 1/4 dose to full-dose image experiments, PET-CM is also
competitive, achieving an NMAE 1.058+/-0.092%, PSNR of 35.548+/-0.805dB, SSIM
of 0.978+/-0.005, and NCC 0.981+/-0.007 The results indicate promising low-dose
PET image quality improvements for clinical applications.
- Abstract(参考訳): 電離放射線に伴うリスクを低減するためには,PET画像における放射線被曝の低減が必要である。
しかし、これは画像のコントラストと定量化に有害な影響を及ぼす。
低線量データから合成された高品質なPET画像は、放射線照射を減らす解決策を提供する。
PET-CM(PET Consistency Model, PET-CM)は, 最新の拡散型合成モデルに匹敵する合成品質を得るが, 効率は向上する。
複数の時間ステップで全線量PET画像にガウスノイズを加える前処理と、PETシフトウインドウ・ビジョン・トランスフォーマー(PET-VIT)ネットワークを用いた逆拡散処理により、対応する低線量PETで条件付けられた復調手順を学習する。
PET-CMでは, 逆処理によりガウス雑音を直接フルドーズPETに分解する整合関数が学習される。
PET線量1/8と1/4のみを用いて全線量画像生成におけるPET-CMの評価を行った。
1/8線量とフルドーズ画像との比較では, PET-CMは正常平均絶対誤差 (NMAE) 1.233/-0.131%, ピーク信号-雑音比 (PSNR) 33.915+/-0.933dB, 構造類似度指数 (SSIM) 0.964+/-0.009, 正常交差相関 (NCC) 0.968+/-0.011, 平均生成時間は62秒であった。
これは,PET-CMを用いた最新拡散モデルに比べて12倍高速である。
NMAE 1.058+/-0.092%、PSNR 35.548+/-0.805dB、SSIM 0.978+/-0.005、NCC 0.981+/-0.007 のフルドーズ画像実験でもPET-CMは競争力がある。
関連論文リスト
- Three-Dimensional Amyloid-Beta PET Synthesis from Structural MRI with Conditional Generative Adversarial Networks [45.426889188365685]
アルツハイマー病の徴候には、アミロイド-ベタ鉱床と脳萎縮がある。
PETは高価で侵襲的であり、患者を電離放射線に曝す。
MRIはより安価で、非侵襲的で、電離放射線を含まないが、脳萎縮の測定に限られる。
論文 参考訳(メタデータ) (2024-05-03T14:10:29Z) - Two-Phase Multi-Dose-Level PET Image Reconstruction with Dose Level Awareness [43.45142393436787]
線量レベルの認識が可能な新しい二相多段PET再構成アルゴリズムを設計する。
事前学習フェーズは、きめ細かい識別特徴と効果的な意味表現の両方を探索するために考案された。
SPET予測フェーズは、事前学習した線量レベルを利用した粗い予測ネットワークを採用して予備結果を生成する。
論文 参考訳(メタデータ) (2024-04-02T01:57:08Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
改良された深層学習手法は、画像のノイズを除去する能力を示しているが、正確な地上の真実を必要とする。
畳み込みニューラルネットワーク(CNN)のトレーニングに基礎的真理を必要としないLDCTのための新しい自己教師型フレームワークを提案する。
数値および実験結果から,Sparse View を用いた N2I の再構成精度は低下しており,提案手法は異なる範囲のサンプリング角度で画像品質を向上する。
論文 参考訳(メタデータ) (2023-12-19T22:40:51Z) - PET Synthesis via Self-supervised Adaptive Residual Estimation
Generative Adversarial Network [14.381830012670969]
近年,低線量画像から高画質PET画像を生成する手法が,低線量画像の回収手法の最先端技術であることが報告されている。
これらの問題に対処するため、我々は自己教師付き適応残差推定生成対向ネットワーク(SS-AEGAN)を開発した。
SS-AEGANは、様々な線量還元因子による最先端の合成法よりも一貫して優れていた。
論文 参考訳(メタデータ) (2023-10-24T06:43:56Z) - Contrastive Diffusion Model with Auxiliary Guidance for Coarse-to-Fine
PET Reconstruction [62.29541106695824]
本稿では, 粗い予測モジュール (CPM) と反復的修正モジュール (IRM) から構成される粗大なPET再構成フレームワークを提案する。
計算オーバーヘッドの大部分をCPMに委譲することで,本手法のサンプリング速度を大幅に向上させることができる。
2つの追加戦略、すなわち補助的な誘導戦略と対照的な拡散戦略が提案され、再構築プロセスに統合される。
論文 参考訳(メタデータ) (2023-08-20T04:10:36Z) - CG-3DSRGAN: A classification guided 3D generative adversarial network
for image quality recovery from low-dose PET images [10.994223928445589]
PET画像では, トレーサー線量による高放射能が主な関心事である。
投与量を減少させると、画像の質が不十分になる。
CNNを用いた低線量PET合成法が開発されている。
論文 参考訳(メタデータ) (2023-04-03T05:39:02Z) - Self-Supervised Pre-Training for Deep Image Prior-Based Robust PET Image
Denoising [0.5999777817331317]
ポジトロン・エミッション・トモグラフィ(PET)画像修復にDeep Image prior (DIP) が有効である。
DIPに基づくPET画像復調性能を改善するための自己教師付き事前学習モデルを提案する。
論文 参考訳(メタデータ) (2023-02-27T06:55:00Z) - A resource-efficient deep learning framework for low-dose brain PET
image reconstruction and analysis [13.713286047709982]
本稿では,L-PET再構成と解析のための資源効率の高いディープラーニングフレームワーク,TransGAN-SDAMを提案する。
トランスGANは高品質なF-PET画像を生成し、SDAMは生成されたF-PETスライス列の空間情報を統合して全脳F-PET画像を生成する。
論文 参考訳(メタデータ) (2022-02-14T08:40:19Z) - The Report on China-Spain Joint Clinical Testing for Rapid COVID-19 Risk
Screening by Eye-region Manifestations [59.48245489413308]
携帯電話カメラで中国とスペインで撮影された視線領域の画像を用いて、新型コロナウイルスの早期スクリーニングモデルを開発し、テストした。
AUC, 感度, 特異性, 精度, F1。
論文 参考訳(メタデータ) (2021-09-18T02:28:01Z) - OCT-GAN: Single Step Shadow and Noise Removal from Optical Coherence
Tomography Images of the Human Optic Nerve Head [47.812972855826985]
我々は、ノイズと網膜の影の両方を10.4ms以内で見えない単一フレームのBスキャンから除去する単一プロセスを開発した。
提案アルゴリズムは,長い画像取得時間の必要性を低減し,高価なハードウェア要件を最小化し,OCT画像の動作アーティファクトを低減する。
論文 参考訳(メタデータ) (2020-10-06T08:32:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。