論文の概要: Full-dose Whole-body PET Synthesis from Low-dose PET Using High-efficiency Denoising Diffusion Probabilistic Model: PET Consistency Model
- arxiv url: http://arxiv.org/abs/2308.13072v3
- Date: Wed, 17 Apr 2024 02:09:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-19 00:26:13.216155
- Title: Full-dose Whole-body PET Synthesis from Low-dose PET Using High-efficiency Denoising Diffusion Probabilistic Model: PET Consistency Model
- Title(参考訳): 高能率拡散確率モデル:PET一貫性モデルを用いた低線量PETの全体PET合成
- Authors: Shaoyan Pan, Elham Abouei, Junbo Peng, Joshua Qian, Jacob F Wynne, Tonghe Wang, Chih-Wei Chang, Justin Roper, Jonathon A Nye, Hui Mao, Xiaofeng Yang,
- Abstract要約: PET画像における最も重要なトレードオフの1つは、画質と放射線線量の間にある。
PET-CM(PET Consistency Model)は,高画質のフルドーズPET画像を生成するための効率的な拡散法である。
PET-CMは最先端の画像品質を実現し、他の方法よりもはるかに少ない時間を要した。
- 参考スコア(独自算出の注目度): 1.8099601847388016
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Objective: Positron Emission Tomography (PET) has been a commonly used imaging modality in broad clinical applications. One of the most important tradeoffs in PET imaging is between image quality and radiation dose: high image quality comes with high radiation exposure. Improving image quality is desirable for all clinical applications while minimizing radiation exposure is needed to reduce risk to patients. Approach: We introduce PET Consistency Model (PET-CM), an efficient diffusion-based method for generating high-quality full-dose PET images from low-dose PET images. It employs a two-step process, adding Gaussian noise to full-dose PET images in the forward diffusion, and then denoising them using a PET Shifted-window Vision Transformer (PET-VIT) network in the reverse diffusion. The PET-VIT network learns a consistency function that enables direct denoising of Gaussian noise into clean full-dose PET images. PET-CM achieves state-of-the-art image quality while requiring significantly less computation time than other methods. Results: In experiments comparing eighth-dose to full-dose images, PET-CM demonstrated impressive performance with NMAE of 1.278+/-0.122%, PSNR of 33.783+/-0.824dB, SSIM of 0.964+/-0.009, NCC of 0.968+/-0.011, HRS of 4.543, and SUV Error of 0.255+/-0.318%, with an average generation time of 62 seconds per patient. This is a significant improvement compared to the state-of-the-art diffusion-based model with PET-CM reaching this result 12x faster. Similarly, in the quarter-dose to full-dose image experiments, PET-CM delivered competitive outcomes, achieving an NMAE of 0.973+/-0.066%, PSNR of 36.172+/-0.801dB, SSIM of 0.984+/-0.004, NCC of 0.990+/-0.005, HRS of 4.428, and SUV Error of 0.151+/-0.192% using the same generation process, which underlining its high quantitative and clinical precision in both denoising scenario.
- Abstract(参考訳): 目的:ポジトロン・エミッション・トモグラフィ(PET)は、幅広い臨床応用において一般的に用いられる画像モダリティである。
PET画像における最も重要なトレードオフの1つは、画像品質と放射線線量の間にある。
画像品質の向上はすべての臨床応用に望ましいが, 患者へのリスク軽減には放射線被曝の最小化が必要である。
PET-CM(PET Consistency Model, PET-CM)は, 低線量PET画像から高画質のフルドーズPET画像を生成するための効率的な拡散法である。
2段階のプロセスを使用して、前方拡散における全線PET画像にガウスノイズを加え、逆拡散におけるPET-VITネットワークを用いてそれらをデノナイズする。
PET-VITネットワークは、ガウスノイズを直接フルドーズPET画像に分解できる一貫性関数を学習する。
PET-CMは、他の方法に比べて計算時間を大幅に削減しつつ、最先端の画像品質を実現する。
結果: PET-CM実験では,NMAEが1.278+/-0.122%,PSNRが33.783+/-0.824dB,SSIMが0.964+/-0.009,NCCが0.968+/-0.011,HRSが4343,SUVエラーが0.255+/-0.318%,平均生成時間が62秒であった。
これは,PET-CMを用いた最新拡散モデルに比べて12倍高速である。
同様に、フルドーズ画像実験においてPET-CMは競争的な結果をもたらし、NMAEの0.973+/-0.066%、PSNRの36.172+/-0.801dB、SSIMの0.984+/-0.004、NCCの0.990+/-0.005、HRSの4.428、SUVのエラーの0.151+/-0.192%を同じ生成法を用いて達成した。
関連論文リスト
- Three-Dimensional Amyloid-Beta PET Synthesis from Structural MRI with Conditional Generative Adversarial Networks [45.426889188365685]
アルツハイマー病の徴候には、アミロイド-ベタ鉱床と脳萎縮がある。
PETは高価で侵襲的であり、患者を電離放射線に曝す。
MRIはより安価で、非侵襲的で、電離放射線を含まないが、脳萎縮の測定に限られる。
論文 参考訳(メタデータ) (2024-05-03T14:10:29Z) - Two-Phase Multi-Dose-Level PET Image Reconstruction with Dose Level Awareness [43.45142393436787]
線量レベルの認識が可能な新しい二相多段PET再構成アルゴリズムを設計する。
事前学習フェーズは、きめ細かい識別特徴と効果的な意味表現の両方を探索するために考案された。
SPET予測フェーズは、事前学習した線量レベルを利用した粗い予測ネットワークを採用して予備結果を生成する。
論文 参考訳(メタデータ) (2024-04-02T01:57:08Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
改良された深層学習手法は、画像のノイズを除去する能力を示しているが、正確な地上の真実を必要とする。
畳み込みニューラルネットワーク(CNN)のトレーニングに基礎的真理を必要としないLDCTのための新しい自己教師型フレームワークを提案する。
数値および実験結果から,Sparse View を用いた N2I の再構成精度は低下しており,提案手法は異なる範囲のサンプリング角度で画像品質を向上する。
論文 参考訳(メタデータ) (2023-12-19T22:40:51Z) - PET Synthesis via Self-supervised Adaptive Residual Estimation
Generative Adversarial Network [14.381830012670969]
近年,低線量画像から高画質PET画像を生成する手法が,低線量画像の回収手法の最先端技術であることが報告されている。
これらの問題に対処するため、我々は自己教師付き適応残差推定生成対向ネットワーク(SS-AEGAN)を開発した。
SS-AEGANは、様々な線量還元因子による最先端の合成法よりも一貫して優れていた。
論文 参考訳(メタデータ) (2023-10-24T06:43:56Z) - Contrastive Diffusion Model with Auxiliary Guidance for Coarse-to-Fine
PET Reconstruction [62.29541106695824]
本稿では, 粗い予測モジュール (CPM) と反復的修正モジュール (IRM) から構成される粗大なPET再構成フレームワークを提案する。
計算オーバーヘッドの大部分をCPMに委譲することで,本手法のサンプリング速度を大幅に向上させることができる。
2つの追加戦略、すなわち補助的な誘導戦略と対照的な拡散戦略が提案され、再構築プロセスに統合される。
論文 参考訳(メタデータ) (2023-08-20T04:10:36Z) - CG-3DSRGAN: A classification guided 3D generative adversarial network
for image quality recovery from low-dose PET images [10.994223928445589]
PET画像では, トレーサー線量による高放射能が主な関心事である。
投与量を減少させると、画像の質が不十分になる。
CNNを用いた低線量PET合成法が開発されている。
論文 参考訳(メタデータ) (2023-04-03T05:39:02Z) - Self-Supervised Pre-Training for Deep Image Prior-Based Robust PET Image
Denoising [0.5999777817331317]
ポジトロン・エミッション・トモグラフィ(PET)画像修復にDeep Image prior (DIP) が有効である。
DIPに基づくPET画像復調性能を改善するための自己教師付き事前学習モデルを提案する。
論文 参考訳(メタデータ) (2023-02-27T06:55:00Z) - A resource-efficient deep learning framework for low-dose brain PET
image reconstruction and analysis [13.713286047709982]
本稿では,L-PET再構成と解析のための資源効率の高いディープラーニングフレームワーク,TransGAN-SDAMを提案する。
トランスGANは高品質なF-PET画像を生成し、SDAMは生成されたF-PETスライス列の空間情報を統合して全脳F-PET画像を生成する。
論文 参考訳(メタデータ) (2022-02-14T08:40:19Z) - The Report on China-Spain Joint Clinical Testing for Rapid COVID-19 Risk
Screening by Eye-region Manifestations [59.48245489413308]
携帯電話カメラで中国とスペインで撮影された視線領域の画像を用いて、新型コロナウイルスの早期スクリーニングモデルを開発し、テストした。
AUC, 感度, 特異性, 精度, F1。
論文 参考訳(メタデータ) (2021-09-18T02:28:01Z) - OCT-GAN: Single Step Shadow and Noise Removal from Optical Coherence
Tomography Images of the Human Optic Nerve Head [47.812972855826985]
我々は、ノイズと網膜の影の両方を10.4ms以内で見えない単一フレームのBスキャンから除去する単一プロセスを開発した。
提案アルゴリズムは,長い画像取得時間の必要性を低減し,高価なハードウェア要件を最小化し,OCT画像の動作アーティファクトを低減する。
論文 参考訳(メタデータ) (2020-10-06T08:32:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。