論文の概要: Enhancing Breast Cancer Classification Using Transfer ResNet with
Lightweight Attention Mechanism
- arxiv url: http://arxiv.org/abs/2308.13150v2
- Date: Wed, 27 Sep 2023 07:56:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-28 18:48:43.841010
- Title: Enhancing Breast Cancer Classification Using Transfer ResNet with
Lightweight Attention Mechanism
- Title(参考訳): 軽度注意機構を有するTransfer ResNetを用いた乳癌分類の強化
- Authors: Suxing Liu
- Abstract要約: 本モデルでは,軽量アテンション機構とドロップアウト層を統合し,特徴認識と分類性能を大幅に向上させる。
実験の結果,従来のモデル,現代のビジュアルトランスフォーマー,大規模モデルよりも精度,精度,リコール,F1スコア,GMeanが優れていた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this study, we use a ResNet50 deep learning model with a lightweight
attention mechanism to solve the image classification problem, especially in
medical pathology tissue images and limited-scale datasets. Our model
integrates the lightweight attention mechanism and the dropout layer to
substantially improve the feature recognition and classification performance.
Experimental results show that our model outperforms traditional models, modern
visual transformers and large-scale models in terms of precision, accuracy,
recall, F1 score and GMean. It is worth mentioning that our model also exhibits
advantages in convergence speed. These results fully demonstrate the excellent
performance of our model and lay a solid foundation for its application in real
image classification tasks.
- Abstract(参考訳): 本研究では,ResNet50の深層学習モデルを用いて,画像分類の問題,特に医療病理組織像や限られた規模データセットの解決を行う。
本モデルでは,軽量アテンション機構とドロップアウト層を統合し,特徴認識と分類性能を大幅に改善する。
実験の結果,従来のモデル,現代のビジュアルトランスフォーマー,大規模モデルよりも精度,精度,リコール,F1スコア,GMeanが優れていた。
私たちのモデルは収束速度の利点も示しています。
これらの結果は,本モデルの優れた性能を十分に証明し,実画像分類タスクへの応用の基盤となる。
関連論文リスト
- Classifier Enhanced Deep Learning Model for Erythroblast Differentiation with Limited Data [0.08388591755871733]
病態と遺伝疾患の1%を含む血液疾患は、重大な診断上の課題を呈している。
本手法では,機械学習モデルの有効性を考慮した各種機械学習設定の評価を行う。
データが利用可能になった場合、提案されたソリューションは、小さくてユニークなデータセットの精度を高めるためのソリューションである。
論文 参考訳(メタデータ) (2024-11-23T15:51:15Z) - Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
1p/19q遺伝子の同時欠失は、低グレードグリオーマの臨床成績と関連している。
本研究の目的は,MRIを用いた畳み込みニューラルネットワークを脳がん検出に活用することである。
論文 参考訳(メタデータ) (2024-09-29T07:04:26Z) - Comparative Analysis of Transfer Learning Models for Breast Cancer Classification [10.677937909900486]
本研究は, 病理組織学的スライドにおいて, 浸潤性直腸癌 (IDC) と非IDCを区別する深層学習モデルの効率について検討した。
ResNet-50, DenseNet-121, ResNeXt-50, Vision Transformer (ViT), GoogLeNet (Inception v3), EfficientNet, MobileNet, SqueezeNet。
論文 参考訳(メタデータ) (2024-08-29T18:49:32Z) - ResNet101 and DAE for Enhance Quality and Classification Accuracy in Skin Cancer Imaging [0.0]
本稿では,ResNet101を用いて,Deep Autoencoder (DAE) という,革新的な畳み込み型アンサンブルネットワーク手法を提案する。
この方法は、畳み込みに基づくディープニューラルネットワークを用いて皮膚がんを検出する。
精度96.03%、精度95.40%、リコール96.05%、F測定0.9576、AUC0.98である。
論文 参考訳(メタデータ) (2024-03-21T09:07:28Z) - Histopathologic Cancer Detection [0.0]
この作業では、PatchCamelyonベンチマークデータセットを使用して、モデルをマルチレイヤのパーセプトロンと畳み込みモデルでトレーニングし、精度の高いリコール、F1スコア、精度、AUCスコアでモデルのパフォーマンスを観察する。
また,データ拡張を伴うResNet50とInceptionNetモデルを導入し,ResNet50が最先端モデルに勝てることを示す。
論文 参考訳(メタデータ) (2023-11-13T19:51:46Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - Compact representations of convolutional neural networks via weight
pruning and quantization [63.417651529192014]
本稿では、音源符号化に基づく畳み込みニューラルネットワーク(CNN)の新しいストレージフォーマットを提案し、重み付けと量子化の両方を活用する。
我々は、全接続層で0.6%、ネットワーク全体で5.44%のスペース占有率を削減し、最低でもベースラインと同じくらいの競争力を発揮する。
論文 参考訳(メタデータ) (2021-08-28T20:39:54Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
前立腺癌(PCa)は、2020年に約141万件の新規感染者と約37万5000人の死者を出した男性の死因の1つである。
自動診断を行うには、まず前立腺組織サンプルをギガピクセル分解能全スライド画像にデジタイズする。
パッチと呼ばれる小さなサブイメージが抽出され、予測され、パッチレベルの分類が得られる。
論文 参考訳(メタデータ) (2021-05-20T18:13:58Z) - Metastatic Cancer Image Classification Based On Deep Learning Method [7.832709940526033]
画像分類におけるディープラーニングアルゴリズム, DenseNet169 フレームワーク, Rectified Adam 最適化アルゴリズムを併用したNoval法を提案する。
我々のモデルは、Vgg19、Resnet34、Resnet50のような他の古典的畳み込みニューラルネットワークアプローチよりも優れた性能を実現する。
論文 参考訳(メタデータ) (2020-11-13T16:04:39Z) - RetiNerveNet: Using Recursive Deep Learning to Estimate Pointwise 24-2
Visual Field Data based on Retinal Structure [109.33721060718392]
緑内障は 世界でも 不可逆的な盲目の 主要な原因です 7000万人以上が 影響を受けています
The Standard Automated Perimetry (SAP) test's innate difficulty and its high test-retest variable, we propose the RetiNerveNet。
論文 参考訳(メタデータ) (2020-10-15T03:09:08Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
我々は,従来のトランスファー学習の改良にマルチソース・トランスファー・ラーニングを応用して,CTスキャンによる新型コロナウイルスの分類を提案する。
マルチソースファインチューニングアプローチでは、ImageNetで微調整されたベースラインモデルよりも優れています。
我々の最高のパフォーマンスモデルは、0.893の精度と0.897のリコールスコアを達成でき、ベースラインのリコールスコアを9.3%上回った。
論文 参考訳(メタデータ) (2020-09-22T11:53:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。