論文の概要: Chunk, Align, Select: A Simple Long-sequence Processing Method for Transformers
- arxiv url: http://arxiv.org/abs/2308.13191v2
- Date: Fri, 5 Jul 2024 15:00:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 01:01:54.461972
- Title: Chunk, Align, Select: A Simple Long-sequence Processing Method for Transformers
- Title(参考訳): Chunk, Align, Select: 変圧器の簡単なロングシーケンス処理方法
- Authors: Jiawen Xie, Pengyu Cheng, Xiao Liang, Yong Dai, Nan Du,
- Abstract要約: そこで本研究では,オフザシェルフ事前学習型トランスフォーマーにおいて,より長いシーケンス処理を実現するための簡単なフレームワークを提案する。
提案手法では,各時系列入力をチャンクのバッチに分割し,エンコーディングステップ中にインターチャンク情報をアライメントする。
我々は,変圧器のデコーダを環境とみなす効果的な隠れ選択ポリシーを学習する。
- 参考スコア(独自算出の注目度): 24.109312575970456
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Although dominant in natural language processing, transformer-based models remain challenged by the task of long-sequence processing, because the computational cost of self-attention operations in transformers swells quadratically with the input sequence length. To alleviate the complexity of long-sequence processing, we propose a simple framework to enable the offthe-shelf pre-trained transformers to process much longer sequences, while the computation and memory costs remain growing linearly with the input sequence lengths. More specifically, our method divides each long-sequence input into a batch of chunks, then aligns the interchunk information during the encoding steps, and finally selects the most representative hidden states from the encoder for the decoding process. To extract inter-chunk semantic information, we align the start and end token embeddings among chunks in each encoding transformer block. To learn an effective hidden selection policy, we design a dual updating scheme inspired by reinforcement learning, which regards the decoders of transformers as environments, and the downstream performance metrics as the rewards to evaluate the hidden selection actions. Our empirical results on real-world long-text summarization and reading comprehension tasks demonstrate effective improvements compared to prior longsequence processing baselines.
- Abstract(参考訳): 自然言語処理では支配的であるが、トランスフォーマーにおける自己アテンション演算の計算コストは入力シーケンス長の2倍に膨らむため、トランスフォーマーベースのモデルは長いシーケンス処理のタスクによって依然として挑戦されている。
長いシーケンス処理の複雑さを軽減するため、オフザシェルの事前学習型トランスフォーマーがずっと長いシーケンスを処理できるようにするための単純なフレームワークを提案し、計算とメモリコストは入力シーケンスの長さとともに線形に増加し続ける。
具体的には、各長文入力をチャンクに分割し、エンコーディングステップ中にインターチャンク情報を整列し、最後にエンコーダから最も代表的な隠蔽状態を選択して復号処理を行う。
チャンク間セマンティック情報を抽出するため,各エンコードトランスブロック内のチャンク間に開始トークンと終了トークンの埋め込みを整列する。
効率的な隠れ選択ポリシーを学習するために,変換器のデコーダを環境とみなす強化学習に着想を得た2つの更新スキームを設計し,下流のパフォーマンス指標を隠れ選択行動を評価する報奨として利用する。
実世界の長文要約と読解タスクに関する実証実験の結果,従来の長文処理ベースラインと比較して,効果的な改善が示された。
関連論文リスト
- Ring Attention with Blockwise Transformers for Near-Infinite Context [88.61687950039662]
本稿では,複数のデバイスにまたがって長いシーケンスを分散するために,ブロックワイドな自己注意とフィードフォワードの計算を利用する,ブロックワイドトランスフォーマーを用いたリングアテンション(リングアテンション)を提案する。
提案手法では,先行メモリ効率の変換器で達成可能なものよりも,デバイス数倍のシーケンスのトレーニングと推論が可能となる。
論文 参考訳(メタデータ) (2023-10-03T08:44:50Z) - Blockwise Parallel Transformer for Large Context Models [70.97386897478238]
Blockwise Parallel Transformer (BPT) は、メモリコストを最小限に抑えるために、自己アテンションとフィードフォワードネットワーク融合のブロックワイズ計算である。
メモリ効率を維持しながら、長い入力シーケンスを処理することにより、BPTはバニラ変換器の32倍、以前のメモリ効率の4倍のトレーニングシーケンスを可能にする。
論文 参考訳(メタデータ) (2023-05-30T19:25:51Z) - Scaling Transformer to 1M tokens and beyond with RMT [5.60052250541419]
変圧器によって解ける問題の範囲の広い大きな制限は、入力サイズによる計算複雑性の2次スケーリングである。
本研究では,入力コンテキスト長を線形にスケーリングしながら,事前学習したトランスフォーマーモデルの繰り返しメモリ拡張について検討する。
提案手法は,検索精度を高く保ちつつ,前例のない200万トークンのシーケンスの情報をメモリに格納できることを実証する。
論文 参考訳(メタデータ) (2023-04-19T16:18:54Z) - Error Correction Code Transformer [92.10654749898927]
本稿では,トランスフォーマーアーキテクチャを任意のブロック長で線形符号のソフトデコードに拡張することを提案する。
我々は,各チャネルの出力次元を高次元に符号化し,個別に処理すべきビット情報のより良い表現を行う。
提案手法は、トランスフォーマーの極端なパワーと柔軟性を示し、既存の最先端のニューラルデコーダを、その時間的複雑さのごく一部で大きなマージンで上回る。
論文 参考訳(メタデータ) (2022-03-27T15:25:58Z) - Linearizing Transformer with Key-Value Memory Bank [54.83663647680612]
我々は、ソースシーケンスを低次元表現に投影するアプローチであるMemSizerを提案する。
MemSizerは同じ線形時間複雑性を達成するだけでなく、効率的なリカレントスタイルの自己回帰生成も楽しめる。
我々はMemSizerがバニラ変圧器の効率と精度のトレードオフを改善することを実証した。
論文 参考訳(メタデータ) (2022-03-23T18:10:18Z) - Streaming Simultaneous Speech Translation with Augmented Memory
Transformer [29.248366441276662]
トランスフォーマーに基づくモデルは、音声翻訳タスクにおける最先端のパフォーマンスを達成した。
本稿では,拡張メモリ変換器エンコーダを備えたエンドツーエンド変換器を用いたシーケンス・ツー・シーケンスモデルを提案する。
論文 参考訳(メタデータ) (2020-10-30T18:28:42Z) - Cross-Thought for Sentence Encoder Pre-training [89.32270059777025]
Cross-Thoughtは、事前トレーニングシーケンスエンコーダに対する新しいアプローチである。
我々は、Transformerベースのシーケンスエンコーダを、多数の短いシーケンスに対してトレーニングする。
質問応答とテキストのエンコーダタスクの実験は、事前学習したエンコーダが最先端のエンコーダより優れていることを示す。
論文 参考訳(メタデータ) (2020-10-07T21:02:41Z) - Funnel-Transformer: Filtering out Sequential Redundancy for Efficient
Language Processing [112.2208052057002]
本稿では,隠れ状態の列を短く圧縮するFunnel-Transformerを提案する。
Funnel-TransformerはFLOPに匹敵する数が少ないため、様々なシーケンスレベルの予測タスクにおいて標準のTransformerよりも優れている。
論文 参考訳(メタデータ) (2020-06-05T05:16:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。