論文の概要: ReST: A Reconfigurable Spatial-Temporal Graph Model for Multi-Camera
Multi-Object Tracking
- arxiv url: http://arxiv.org/abs/2308.13229v1
- Date: Fri, 25 Aug 2023 08:02:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-28 14:54:41.839377
- Title: ReST: A Reconfigurable Spatial-Temporal Graph Model for Multi-Camera
Multi-Object Tracking
- Title(参考訳): ReST:マルチカメラマルチオブジェクト追跡のための再構成可能な空間時間グラフモデル
- Authors: Cheng-Che Cheng, Min-Xuan Qiu, Chen-Kuo Chiang, Shang-Hong Lai
- Abstract要約: Multi-Camera Multi-Object Tracking (MC-MOT)は、複数のビューからの情報を利用して、閉塞や混み合ったシーンの問題に対処する。
現在のグラフベースの手法では、空間的および時間的整合性に関する情報を効果的に利用しない。
本稿では,まず,検出対象を空間的に関連づけて時間グラフに再構成する,新しい再構成可能なグラフモデルを提案する。
- 参考スコア(独自算出の注目度): 11.619493960418176
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-Camera Multi-Object Tracking (MC-MOT) utilizes information from
multiple views to better handle problems with occlusion and crowded scenes.
Recently, the use of graph-based approaches to solve tracking problems has
become very popular. However, many current graph-based methods do not
effectively utilize information regarding spatial and temporal consistency.
Instead, they rely on single-camera trackers as input, which are prone to
fragmentation and ID switch errors. In this paper, we propose a novel
reconfigurable graph model that first associates all detected objects across
cameras spatially before reconfiguring it into a temporal graph for Temporal
Association. This two-stage association approach enables us to extract robust
spatial and temporal-aware features and address the problem with fragmented
tracklets. Furthermore, our model is designed for online tracking, making it
suitable for real-world applications. Experimental results show that the
proposed graph model is able to extract more discriminating features for object
tracking, and our model achieves state-of-the-art performance on several public
datasets.
- Abstract(参考訳): マルチカメラマルチオブジェクトトラッキング(mc-mot)は、複数のビューからの情報を活用し、オクルージョンや混雑したシーンの問題を解決する。
近年,追跡問題の解法としてグラフベースの手法が普及している。
しかし、現在のグラフベースの手法の多くは、空間的・時間的整合性に関する情報を効果的に活用していない。
代わりに、シングルカメラトラッカーを入力として、フラグメンテーションやidスイッチのエラーが発生しやすい。
本稿では,全ての検出対象を空間的に関連付ける新しい再構成可能グラフモデルを提案し,それを時間的関連付けのための時間グラフに再構成する。
この二段階連想アプローチにより,頑健な空間的特徴と時間的特徴を抽出し,分断されたトラックレットで問題に対処することができる。
さらに,本モデルはオンライントラッキング用に設計されており,実世界のアプリケーションに適している。
実験結果から,提案したグラフモデルにより,オブジェクト追跡のためのより識別性の高い特徴を抽出できることが示唆された。
関連論文リスト
- Multivariate Time-Series Anomaly Detection based on Enhancing Graph Attention Networks with Topological Analysis [31.43159668073136]
時系列における教師なし異常検出は、手動による介入の必要性を大幅に低減するため、産業応用において不可欠である。
従来の手法では、グラフニューラルネットワーク(GNN)やトランスフォーマーを使用して空間を解析し、RNNは時間的依存をモデル化していた。
本稿では,TopoGDNと呼ばれる多変量時系列異常検出のための拡張グラフ注意ネットワーク(GAT)上に構築された新しい時間モデルを提案する。
論文 参考訳(メタデータ) (2024-08-23T14:06:30Z) - Multi-Scene Generalized Trajectory Global Graph Solver with Composite
Nodes for Multiple Object Tracking [61.69892497726235]
複合ノードメッセージパッシングネットワーク(CoNo-Link)は、超長いフレーム情報を関連付けるためのフレームワークである。
オブジェクトをノードとして扱う従来の方法に加えて、このネットワークは情報インタラクションのためのノードとしてオブジェクトトラジェクトリを革新的に扱う。
我々のモデルは、合成ノードを追加することで、より長い時間スケールでより良い予測を学習することができる。
論文 参考訳(メタデータ) (2023-12-14T14:00:30Z) - Single-Shot and Multi-Shot Feature Learning for Multi-Object Tracking [55.13878429987136]
そこで本研究では,異なる目標に対して,単発と複数発の特徴を共同で学習するための,シンプルで効果的な2段階特徴学習パラダイムを提案する。
提案手法は,DanceTrackデータセットの最先端性能を達成しつつ,MOT17およびMOT20データセットの大幅な改善を実現している。
論文 参考訳(メタデータ) (2023-11-17T08:17:49Z) - UnsMOT: Unified Framework for Unsupervised Multi-Object Tracking with
Geometric Topology Guidance [6.577227592760559]
UnsMOTは、オブジェクトの外観と運動の特徴と幾何学的情報を組み合わせて、より正確なトラッキングを提供する新しいフレームワークである。
実験結果から, HOTA, IDF1, MOTAの計測値において, 最先端手法と比較して顕著な性能を示した。
論文 参考訳(メタデータ) (2023-09-03T04:58:12Z) - Learning to Track with Object Permanence [61.36492084090744]
共同物体の検出と追跡のためのエンドツーエンドのトレーニング可能なアプローチを紹介します。
私たちのモデルは、合成データと実データで共同トレーニングされ、KITTIおよびMOT17データセットの最先端を上回ります。
論文 参考訳(メタデータ) (2021-03-26T04:43:04Z) - Discriminative Appearance Modeling with Multi-track Pooling for
Real-time Multi-object Tracking [20.66906781151]
マルチオブジェクトトラッキングでは、トラッカーはそのメモリ内にシーンの各オブジェクトの外観と動き情報を保持する。
多くのアプローチは、それぞれのターゲットを分離してモデル化し、シーン内のすべてのターゲットを使用してメモリを共同で更新する能力がない。
オンライン上でハードトラッキングのエピソードを生成するマルチトラックプーリングに適応したトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2021-01-28T18:12:39Z) - TrackMPNN: A Message Passing Graph Neural Architecture for Multi-Object
Tracking [8.791710193028903]
本研究は,グラフに基づくデータ構造を用いて問題をモデル化する多目的追跡(MOT)への多くの従来のアプローチに従う。
複数のタイムステップにまたがるデータ関連問題を表す動的無方向性グラフに基づくフレームワークを作成する。
また、メモリ効率が高く、リアルタイムなオンラインアルゴリズムを作成するために対処する必要がある計算問題に対するソリューションと提案も提供します。
論文 参考訳(メタデータ) (2021-01-11T21:52:25Z) - Learning Spatio-Appearance Memory Network for High-Performance Visual
Tracking [79.80401607146987]
既存のオブジェクトトラッキングは通常、フレーム間の視覚的ターゲットにマッチするバウンディングボックスベースのテンプレートを学習する。
本稿では,局所時間メモリネットワークを備え,正確な時空間対応を学習するセグメンテーションに基づくトラッキングアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-09-21T08:12:02Z) - SoDA: Multi-Object Tracking with Soft Data Association [75.39833486073597]
マルチオブジェクトトラッキング(MOT)は、自動運転車の安全な配備の前提条件である。
観測対象間の依存関係をエンコードするトラック埋め込みの計算に注目するMOTに対する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2020-08-18T03:40:25Z) - Tracking Road Users using Constraint Programming [79.32806233778511]
本稿では,マルチオブジェクトトラッキング(MOT)問題のトラッキング・バイ・検出パラダイムに見られるデータアソシエーションフェーズに対する制約プログラミング(CP)アプローチを提案する。
提案手法は車両追跡データを用いてテストし,UA-DETRACベンチマークの上位手法よりも優れた結果を得た。
論文 参考訳(メタデータ) (2020-03-10T00:04:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。