Building Trust in Conversational AI: A Comprehensive Review and Solution
Architecture for Explainable, Privacy-Aware Systems using LLMs and Knowledge
Graph
- URL: http://arxiv.org/abs/2308.13534v1
- Date: Sun, 13 Aug 2023 22:47:51 GMT
- Title: Building Trust in Conversational AI: A Comprehensive Review and Solution
Architecture for Explainable, Privacy-Aware Systems using LLMs and Knowledge
Graph
- Authors: Ahtsham Zafar, Venkatesh Balavadhani Parthasarathy, Chan Le Van, Saad
Shahid, Aafaq Iqbal khan, Arsalan Shahid
- Abstract summary: We introduce a comprehensive tool that provides an in-depth review of over 150 Large Language Models (LLMs)
Building on this foundation, we propose a novel functional architecture that seamlessly integrates the structured dynamics of Knowledge Graphs with the linguistic capabilities of LLMs.
Our architecture adeptly blends linguistic sophistication with factual rigour and further strengthens data security through Role-Based Access Control.
- Score: 0.33554367023486936
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Conversational AI systems have emerged as key enablers of human-like
interactions across diverse sectors. Nevertheless, the balance between
linguistic nuance and factual accuracy has proven elusive. In this paper, we
first introduce LLMXplorer, a comprehensive tool that provides an in-depth
review of over 150 Large Language Models (LLMs), elucidating their myriad
implications ranging from social and ethical to regulatory, as well as their
applicability across industries. Building on this foundation, we propose a
novel functional architecture that seamlessly integrates the structured
dynamics of Knowledge Graphs with the linguistic capabilities of LLMs.
Validated using real-world AI news data, our architecture adeptly blends
linguistic sophistication with factual rigour and further strengthens data
security through Role-Based Access Control. This research provides insights
into the evolving landscape of conversational AI, emphasizing the imperative
for systems that are efficient, transparent, and trustworthy.
Related papers
- ARPA: A Novel Hybrid Model for Advancing Visual Word Disambiguation Using Large Language Models and Transformers [1.6541870997607049]
We present ARPA, an architecture that fuses the unparalleled contextual understanding of large language models with the advanced feature extraction capabilities of transformers.
ARPA's introduction marks a significant milestone in visual word disambiguation, offering a compelling solution.
We invite researchers and practitioners to explore the capabilities of our model, envisioning a future where such hybrid models drive unprecedented advancements in artificial intelligence.
arXiv Detail & Related papers (2024-08-12T10:15:13Z) - Improving Large Language Model (LLM) fidelity through context-aware grounding: A systematic approach to reliability and veracity [0.0]
Large Language Models (LLMs) are increasingly sophisticated and ubiquitous in natural language processing (NLP) applications.
This paper presents a novel framework for contextual grounding in textual models, with a particular emphasis on the Context Representation stage.
Our findings have significant implications for the deployment of LLMs in sensitive domains such as healthcare, legal systems, and social services.
arXiv Detail & Related papers (2024-08-07T18:12:02Z) - A Comprehensive Review of Multimodal Large Language Models: Performance and Challenges Across Different Tasks [74.52259252807191]
Multimodal Large Language Models (MLLMs) address the complexities of real-world applications far beyond the capabilities of single-modality systems.
This paper systematically sorts out the applications of MLLM in multimodal tasks such as natural language, vision, and audio.
arXiv Detail & Related papers (2024-08-02T15:14:53Z) - Combining Knowledge Graphs and Large Language Models [4.991122366385628]
Large language models (LLMs) show astonishing results in language understanding and generation.
They still show some disadvantages, such as hallucinations and lack of domain-specific knowledge.
These issues can be effectively mitigated by incorporating knowledge graphs (KGs)
This work collected 28 papers outlining methods for KG-powered LLMs, LLM-based KGs, and LLM-KG hybrid approaches.
arXiv Detail & Related papers (2024-07-09T05:42:53Z) - Multi-step Inference over Unstructured Data [2.169874047093392]
High-stakes decision-making tasks in fields such as medical, legal and finance require a level of precision, comprehensiveness, and logical consistency.
We have developed a neuro-symbolic AI platform to tackle these problems.
The platform integrates fine-tuned LLMs for knowledge extraction and alignment with a robust symbolic reasoning engine.
arXiv Detail & Related papers (2024-06-26T00:00:45Z) - A Survey on RAG Meeting LLMs: Towards Retrieval-Augmented Large Language Models [71.25225058845324]
Large Language Models (LLMs) have demonstrated revolutionary abilities in language understanding and generation.
Retrieval-Augmented Generation (RAG) can offer reliable and up-to-date external knowledge.
RA-LLMs have emerged to harness external and authoritative knowledge bases, rather than relying on the model's internal knowledge.
arXiv Detail & Related papers (2024-05-10T02:48:45Z) - DIALIGHT: Lightweight Multilingual Development and Evaluation of
Task-Oriented Dialogue Systems with Large Language Models [76.79929883963275]
DIALIGHT is a toolkit for developing and evaluating multilingual Task-Oriented Dialogue (ToD) systems.
It features a secure, user-friendly web interface for fine-grained human evaluation at both local utterance level and global dialogue level.
Our evaluations reveal that while PLM fine-tuning leads to higher accuracy and coherence, LLM-based systems excel in producing diverse and likeable responses.
arXiv Detail & Related papers (2024-01-04T11:27:48Z) - Detecting Any Human-Object Interaction Relationship: Universal HOI
Detector with Spatial Prompt Learning on Foundation Models [55.20626448358655]
This study explores the universal interaction recognition in an open-world setting through the use of Vision-Language (VL) foundation models and large language models (LLMs)
Our design includes an HO Prompt-guided Decoder (HOPD), facilitates the association of high-level relation representations in the foundation model with various HO pairs within the image.
For open-category interaction recognition, our method supports either of two input types: interaction phrase or interpretive sentence.
arXiv Detail & Related papers (2023-11-07T08:27:32Z) - Rethinking the Evaluating Framework for Natural Language Understanding
in AI Systems: Language Acquisition as a Core for Future Metrics [0.0]
In the burgeoning field of artificial intelligence (AI), the unprecedented progress of large language models (LLMs) in natural language processing (NLP) offers an opportunity to revisit the entire approach of traditional metrics of machine intelligence.
Our paper proposes a paradigm shift from the established Turing Test towards an all-embracing framework that hinges on language acquisition.
arXiv Detail & Related papers (2023-09-21T11:34:52Z) - LAMM: Language-Assisted Multi-Modal Instruction-Tuning Dataset,
Framework, and Benchmark [81.42376626294812]
We present Language-Assisted Multi-Modal instruction tuning dataset, framework, and benchmark.
Our aim is to establish LAMM as a growing ecosystem for training and evaluating MLLMs.
We present a comprehensive dataset and benchmark, which cover a wide range of vision tasks for 2D and 3D vision.
arXiv Detail & Related papers (2023-06-11T14:01:17Z) - Knowledge Graph Augmented Network Towards Multiview Representation
Learning for Aspect-based Sentiment Analysis [96.53859361560505]
We propose a knowledge graph augmented network (KGAN) to incorporate external knowledge with explicitly syntactic and contextual information.
KGAN captures the sentiment feature representations from multiple perspectives, i.e., context-, syntax- and knowledge-based.
Experiments on three popular ABSA benchmarks demonstrate the effectiveness and robustness of our KGAN.
arXiv Detail & Related papers (2022-01-13T08:25:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.