論文の概要: Feature Extraction Using Deep Generative Models for Bangla Text
Classification on a New Comprehensive Dataset
- arxiv url: http://arxiv.org/abs/2308.13545v1
- Date: Mon, 21 Aug 2023 22:18:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-03 21:31:11.559989
- Title: Feature Extraction Using Deep Generative Models for Bangla Text
Classification on a New Comprehensive Dataset
- Title(参考訳): 新しい包括的データセットを用いたバングラテキスト分類のための深部生成モデルを用いた特徴抽出
- Authors: Md. Rafi-Ur-Rashid, Sami Azam, Mirjam Jonkman
- Abstract要約: バングラ語は世界で6番目に広く話されている言語であるにもかかわらず、テキストデータセットの不足によりほとんど注目を集めていない。
我々は7つのカテゴリで212,184のBangla文書の包括的なデータセットを収集し、注釈を付け、作成し、公開しました。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The selection of features for text classification is a fundamental task in
text mining and information retrieval. Despite being the sixth most widely
spoken language in the world, Bangla has received little attention due to the
scarcity of text datasets. In this research, we collected, annotated, and
prepared a comprehensive dataset of 212,184 Bangla documents in seven different
categories and made it publicly accessible. We implemented three deep learning
generative models: LSTM variational autoencoder (LSTM VAE), auxiliary
classifier generative adversarial network (AC-GAN), and adversarial autoencoder
(AAE) to extract text features, although their applications are initially found
in the field of computer vision. We utilized our dataset to train these three
models and used the feature space obtained in the document classification task.
We evaluated the performance of the classifiers and found that the adversarial
autoencoder model produced the best feature space.
- Abstract(参考訳): テキスト分類の特徴の選択は,テキストマイニングと情報検索において基本的な課題である。
バングラ語は世界で6番目に広く話されている言語であるにもかかわらず、テキストデータセットの不足によりほとんど注目を集めていない。
本研究では,7つのカテゴリで212,184個のBangla文書の包括的データセットを収集し,注釈を作成し,作成した。
lstm変分オートエンコーダ(lstm vae)、補助分類器生成型adversarial network(ac-gan)、adversarial autoencoder(aae)の3つのディープラーニング生成モデルを実装し、テキストの特徴を抽出する。
この3つのモデルをトレーニングするためにデータセットを利用し,文書分類タスクで得られた特徴空間を用いた。
分類器の性能を評価し,逆オートエンコーダモデルが最適な特徴空間を生成できることを見出した。
関連論文リスト
- Adaptable and Reliable Text Classification using Large Language Models [7.962669028039958]
本稿では,Large Language Models(LLMs)を活用した適応的で信頼性の高いテキスト分類パラダイムを提案する。
我々は、4つの多様なデータセット上で、複数のLLM、機械学習アルゴリズム、ニューラルネットワークベースのアーキテクチャの性能を評価した。
システムの性能は、少数ショットや微調整の戦略によってさらに向上することができる。
論文 参考訳(メタデータ) (2024-05-17T04:05:05Z) - Token Prediction as Implicit Classification to Identify LLM-Generated
Text [37.89852204279844]
本稿では,テキスト生成に関わる大きな言語モデル (LLM) を識別するための新しいアプローチを提案する。
ベースLMに新たな分類層を追加する代わりに、分類タスクを次の注意すべき予測タスクとして再設定する。
実験のバックボーンとしてText-to-Text Transfer Transformer (T5) モデルを用いる。
論文 参考訳(メタデータ) (2023-11-15T06:33:52Z) - Leveraging Contextual Information for Effective Entity Salience Detection [21.30389576465761]
クロスエンコーダアーキテクチャを用いた中規模言語モデルの微調整により,機能工学的アプローチよりも優れた性能が得られることを示す。
また、命令調整言語モデルのゼロショットプロンプトは、タスクの特異性と複雑さを示す劣った結果をもたらすことを示す。
論文 参考訳(メタデータ) (2023-09-14T19:04:40Z) - Multi-Modal Classifiers for Open-Vocabulary Object Detection [104.77331131447541]
本論文の目的は,OVOD(Open-vocabulary Object Detection)である。
標準の2段階オブジェクト検出器アーキテクチャを採用する。
言語記述、画像例、これら2つの組み合わせの3つの方法を探究する。
論文 参考訳(メタデータ) (2023-06-08T18:31:56Z) - TextFormer: A Query-based End-to-End Text Spotter with Mixed Supervision [61.186488081379]
Transformerアーキテクチャを用いた問合せベースのエンドツーエンドテキストスポッターであるTextFormerを提案する。
TextFormerは、画像エンコーダとテキストデコーダの上に構築され、マルチタスクモデリングのための共同セマンティック理解を学ぶ。
分類、セグメンテーション、認識のブランチの相互訓練と最適化を可能にし、より深い特徴共有をもたらす。
論文 参考訳(メタデータ) (2023-06-06T03:37:41Z) - AnnoLLM: Making Large Language Models to Be Better Crowdsourced Annotators [98.11286353828525]
GPT-3.5シリーズのモデルは、様々なNLPタスクにまたがる顕著な少数ショットとゼロショットの能力を示している。
本稿では,2段階のアプローチを取り入れたAnnoLLMを提案する。
我々はAnnoLLMを用いた対話型情報検索データセットを構築した。
論文 参考訳(メタデータ) (2023-03-29T17:03:21Z) - Informative Text Generation from Knowledge Triples [56.939571343797304]
本稿では,トレーニング中に学習した有用な知識を記憶するために,メモリネットワークを利用した新しいメモリ拡張ジェネレータを提案する。
我々は、新しい設定のためのWebNLGからデータセットを導き、我々のモデルの有効性を調べるための広範な実験を行う。
論文 参考訳(メタデータ) (2022-09-26T14:35:57Z) - Modeling Multi-Granularity Hierarchical Features for Relation Extraction [26.852869800344813]
本稿では,原文のみに基づく多粒度特徴抽出手法を提案する。
外部知識を必要とせずに,効果的な構造的特徴が達成可能であることを示す。
論文 参考訳(メタデータ) (2022-04-09T09:44:05Z) - Pre-training Language Model Incorporating Domain-specific Heterogeneous Knowledge into A Unified Representation [49.89831914386982]
本研究では, 構造化されていないテキスト, 半構造化されたテキスト, 十分に構造化されたテキストを含む, あらゆる形式のテキストに対して, 統一された事前学習言語モデル (PLM) を提案する。
提案手法は,データの1/4のみを用いて,プレーンテキストの事前学習に優れる。
論文 参考訳(メタデータ) (2021-09-02T16:05:24Z) - Minimally-Supervised Structure-Rich Text Categorization via Learning on
Text-Rich Networks [61.23408995934415]
テキストリッチネットワークから学習することで,最小限に教師付き分類を行う新しいフレームワークを提案する。
具体的には、テキスト理解のためのテキスト解析モジュールと、クラス差別的でスケーラブルなネットワーク学習のためのネットワーク学習モジュールの2つのモジュールを共同でトレーニングします。
実験の結果,1つのカテゴリに3つのシード文書しか与えられず,その精度は約92%であった。
論文 参考訳(メタデータ) (2021-02-23T04:14:34Z) - GLEAKE: Global and Local Embedding Automatic Keyphrase Extraction [1.0681288493631977]
本稿では,自動キーフレーズ抽出作業のためのグローバルおよびローカル埋め込み自動キーフレーズエクストラクタ(GLEAKE)について紹介する。
GLEAKEは単一の単語と複数単語の埋め込み技術を用いて、候補句の構文的・意味的な側面を探索する。
キーフレーズの最終セットとして最も重要なフレーズを洗練させる。
論文 参考訳(メタデータ) (2020-05-19T20:24:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。