Machine Unlearning for Causal Inference
- URL: http://arxiv.org/abs/2308.13559v1
- Date: Thu, 24 Aug 2023 17:27:01 GMT
- Title: Machine Unlearning for Causal Inference
- Authors: Vikas Ramachandra and Mohit Sethi
- Abstract summary: It is important to enable the model to forget some of its learning/captured information about a given user (machine unlearning)
This paper introduces the concept of machine unlearning for causal inference, particularly propensity score matching and treatment effect estimation.
The dataset used in the study is the Lalonde dataset, a widely used dataset for evaluating the effectiveness of job training programs.
- Score: 0.6621714555125157
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning models play a vital role in making predictions and deriving
insights from data and are being increasingly used for causal inference. To
preserve user privacy, it is important to enable the model to forget some of
its learning/captured information about a given user (machine unlearning). This
paper introduces the concept of machine unlearning for causal inference,
particularly propensity score matching and treatment effect estimation, which
aims to refine and improve the performance of machine learning models for
causal analysis given the above unlearning requirements. The paper presents a
methodology for machine unlearning using a neural network-based propensity
score model. The dataset used in the study is the Lalonde dataset, a widely
used dataset for evaluating the effectiveness i.e. the treatment effect of job
training programs. The methodology involves training an initial propensity
score model on the original dataset and then creating forget sets by
selectively removing instances, as well as matched instance pairs. based on
propensity score matching. These forget sets are used to evaluate the retrained
model, allowing for the elimination of unwanted associations. The actual
retraining of the model is performed using the retain set. The experimental
results demonstrate the effectiveness of the machine unlearning approach. The
distribution and histogram analysis of propensity scores before and after
unlearning provide insights into the impact of the unlearning process on the
data. This study represents the first attempt to apply machine unlearning
techniques to causal inference.
Related papers
- Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
Machine unlearning -- efficiently removing a small "forget set" training data on a pre-divertrained machine learning model -- has recently attracted interest.
Recent research shows that machine unlearning techniques do not hold up in such a challenging setting.
arXiv Detail & Related papers (2024-10-30T17:20:10Z) - Data Shapley in One Training Run [88.59484417202454]
Data Shapley provides a principled framework for attributing data's contribution within machine learning contexts.
Existing approaches require re-training models on different data subsets, which is computationally intensive.
This paper introduces In-Run Data Shapley, which addresses these limitations by offering scalable data attribution for a target model of interest.
arXiv Detail & Related papers (2024-06-16T17:09:24Z) - Distilled Datamodel with Reverse Gradient Matching [74.75248610868685]
We introduce an efficient framework for assessing data impact, comprising offline training and online evaluation stages.
Our proposed method achieves comparable model behavior evaluation while significantly speeding up the process compared to the direct retraining method.
arXiv Detail & Related papers (2024-04-22T09:16:14Z) - An Information Theoretic Approach to Machine Unlearning [45.600917449314444]
Key challenge in unlearning is forgetting the necessary data in a timely manner, while preserving model performance.
In this work, we address the zero-shot unlearning scenario, whereby an unlearning algorithm must be able to remove data given only a trained model and the data to be forgotten.
We derive a simple but principled zero-shot unlearning method based on the geometry of the model.
arXiv Detail & Related papers (2024-02-02T13:33:30Z) - Task-Aware Machine Unlearning and Its Application in Load Forecasting [4.00606516946677]
This paper introduces the concept of machine unlearning which is specifically designed to remove the influence of part of the dataset on an already trained forecaster.
A performance-aware algorithm is proposed by evaluating the sensitivity of local model parameter change using influence function and sample re-weighting.
We tested the unlearning algorithms on linear, CNN, andMixer based load forecasters with a realistic load dataset.
arXiv Detail & Related papers (2023-08-28T08:50:12Z) - Machine Unlearning Methodology base on Stochastic Teacher Network [33.763901254862766]
"Right to be forgotten" grants data owners the right to actively withdraw data that has been used for model training.
Existing machine unlearning methods have been found to be ineffective in quickly removing knowledge from deep learning models.
This paper proposes using a network as a teacher to expedite the mitigation of the influence caused by forgotten data on the model.
arXiv Detail & Related papers (2023-08-28T06:05:23Z) - Machine Unlearning Method Based On Projection Residual [23.24026891609028]
This paper adopts the projection residual method based on Newton method.
The main purpose is to implement machine unlearning tasks in the context of linear regression models and neural network models.
Experiments show that this method is more thorough in deleting data, which is close to model retraining.
arXiv Detail & Related papers (2022-09-30T07:29:55Z) - Machine Unlearning of Features and Labels [72.81914952849334]
We propose first scenarios for unlearning and labels in machine learning models.
Our approach builds on the concept of influence functions and realizes unlearning through closed-form updates of model parameters.
arXiv Detail & Related papers (2021-08-26T04:42:24Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
We propose a novel framework to efficiently test a machine learning model using only a small amount of labeled test data.
The idea is to estimate the metrics of interest for a model-under-test using Bayesian neural network (BNN)
arXiv Detail & Related papers (2021-04-11T12:14:04Z) - Learning to Reweight with Deep Interactions [104.68509759134878]
We propose an improved data reweighting algorithm, in which the student model provides its internal states to the teacher model.
Experiments on image classification with clean/noisy labels and neural machine translation empirically demonstrate that our algorithm makes significant improvement over previous methods.
arXiv Detail & Related papers (2020-07-09T09:06:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.