Disjoint Pose and Shape for 3D Face Reconstruction
- URL: http://arxiv.org/abs/2308.13903v1
- Date: Sat, 26 Aug 2023 15:18:32 GMT
- Title: Disjoint Pose and Shape for 3D Face Reconstruction
- Authors: Raja Kumar, Jiahao Luo, Alex Pang, James Davis
- Abstract summary: We propose an end-to-end pipeline that disjointly solves for pose and shape to make the optimization stable and accurate.
The proposed method achieves end-to-end topological consistency, enables iterative face pose refinement procedure, and show remarkable improvement on both quantitative and qualitative results.
- Score: 4.096453902709292
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing methods for 3D face reconstruction from a few casually captured
images employ deep learning based models along with a 3D Morphable Model(3DMM)
as face geometry prior. Structure From Motion(SFM), followed by Multi-View
Stereo (MVS), on the other hand, uses dozens of high-resolution images to
reconstruct accurate 3D faces.However, it produces noisy and stretched-out
results with only two views available. In this paper, taking inspiration from
both these methods, we propose an end-to-end pipeline that disjointly solves
for pose and shape to make the optimization stable and accurate. We use a face
shape prior to estimate face pose and use stereo matching followed by a 3DMM to
solve for the shape. The proposed method achieves end-to-end topological
consistency, enables iterative face pose refinement procedure, and show
remarkable improvement on both quantitative and qualitative results over
existing state-of-the-art methods.
Related papers
- FrozenRecon: Pose-free 3D Scene Reconstruction with Frozen Depth Models [67.96827539201071]
We propose a novel test-time optimization approach for 3D scene reconstruction.
Our method achieves state-of-the-art cross-dataset reconstruction on five zero-shot testing datasets.
arXiv Detail & Related papers (2023-08-10T17:55:02Z) - A Hierarchical Representation Network for Accurate and Detailed Face
Reconstruction from In-The-Wild Images [15.40230841242637]
We present a novel hierarchical representation network (HRN) to achieve accurate and detailed face reconstruction from a single image.
Our framework can be extended to a multi-view fashion by considering detail consistency of different views.
Our method outperforms the existing methods in both reconstruction accuracy and visual effects.
arXiv Detail & Related papers (2023-02-28T09:24:36Z) - Beyond 3DMM: Learning to Capture High-fidelity 3D Face Shape [77.95154911528365]
3D Morphable Model (3DMM) fitting has widely benefited face analysis due to its strong 3D priori.
Previous reconstructed 3D faces suffer from degraded visual verisimilitude due to the loss of fine-grained geometry.
This paper proposes a complete solution to capture the personalized shape so that the reconstructed shape looks identical to the corresponding person.
arXiv Detail & Related papers (2022-04-09T03:46:18Z) - AvatarMe++: Facial Shape and BRDF Inference with Photorealistic
Rendering-Aware GANs [119.23922747230193]
We introduce the first method that is able to reconstruct render-ready 3D facial geometry and BRDF from a single "in-the-wild" image.
Our method outperforms the existing arts by a significant margin and reconstructs high-resolution 3D faces from a single low-resolution image.
arXiv Detail & Related papers (2021-12-11T11:36:30Z) - Implicit Neural Deformation for Multi-View Face Reconstruction [43.88676778013593]
We present a new method for 3D face reconstruction from multi-view RGB images.
Unlike previous methods which are built upon 3D morphable models, our method leverages an implicit representation to encode rich geometric features.
Our experimental results on several benchmark datasets demonstrate that our approach outperforms alternative baselines and achieves superior face reconstruction results compared to state-of-the-art methods.
arXiv Detail & Related papers (2021-12-05T07:02:53Z) - SIDER: Single-Image Neural Optimization for Facial Geometric Detail
Recovery [54.64663713249079]
SIDER is a novel photometric optimization method that recovers detailed facial geometry from a single image in an unsupervised manner.
In contrast to prior work, SIDER does not rely on any dataset priors and does not require additional supervision from multiple views, lighting changes or ground truth 3D shape.
arXiv Detail & Related papers (2021-08-11T22:34:53Z) - Learning 3D Face Reconstruction with a Pose Guidance Network [49.13404714366933]
We present a self-supervised learning approach to learning monocular 3D face reconstruction with a pose guidance network (PGN)
First, we unveil the bottleneck of pose estimation in prior parametric 3D face learning methods, and propose to utilize 3D face landmarks for estimating pose parameters.
With our specially designed PGN, our model can learn from both faces with fully labeled 3D landmarks and unlimited unlabeled in-the-wild face images.
arXiv Detail & Related papers (2020-10-09T06:11:17Z) - Pix2Surf: Learning Parametric 3D Surface Models of Objects from Images [64.53227129573293]
We investigate the problem of learning to generate 3D parametric surface representations for novel object instances, as seen from one or more views.
We design neural networks capable of generating high-quality parametric 3D surfaces which are consistent between views.
Our method is supervised and trained on a public dataset of shapes from common object categories.
arXiv Detail & Related papers (2020-08-18T06:33:40Z) - Adaptive 3D Face Reconstruction from a Single Image [45.736818498242016]
We propose a novel joint 2D and 3D optimization method to adaptively reconstruct 3D face shapes from a single image.
Experimental results on multiple datasets demonstrate that our method can generate high-quality reconstruction from a single color image.
arXiv Detail & Related papers (2020-07-08T09:35:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.