High-risk Factor Prediction in Lung Cancer Using Thin CT Scans: An
Attention-Enhanced Graph Convolutional Network Approach
- URL: http://arxiv.org/abs/2308.14000v1
- Date: Sun, 27 Aug 2023 04:24:04 GMT
- Title: High-risk Factor Prediction in Lung Cancer Using Thin CT Scans: An
Attention-Enhanced Graph Convolutional Network Approach
- Authors: Xiaotong Fu, Xiangyu Meng, Jing Zhou, Ying Ji
- Abstract summary: Lung cancer, particularly in its advanced stages, remains a leading cause of death globally.
This study introduces an Attention-Enhanced Graph Convolutional Network (AE-GCN) model to classify whether there are high-risk factors in stage I lung cancer based on the preoperative CT images.
- Score: 9.795111455349183
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Lung cancer, particularly in its advanced stages, remains a leading cause of
death globally. Though early detection via low-dose computed tomography (CT) is
promising, the identification of high-risk factors crucial for surgical mode
selection remains a challenge. Addressing this, our study introduces an
Attention-Enhanced Graph Convolutional Network (AE-GCN) model to classify
whether there are high-risk factors in stage I lung cancer based on the
preoperative CT images. This will aid surgeons in determining the optimal
surgical method before the operation. Unlike previous studies that relied on 3D
patch techniques to represent nodule spatial features, our method employs a GCN
model to capture the spatial characteristics of pulmonary nodules.
Specifically, we regard each slice of the nodule as a graph vertex, and the
inherent spatial relationships between slices form the edges. Then, to enhance
the expression of nodule features, we integrated both channel and spatial
attention mechanisms with a pre-trained VGG model for adaptive feature
extraction from pulmonary nodules. Lastly, the effectiveness of the proposed
method is demonstrated using real-world data collected from the hospitals,
thereby emphasizing its potential utility in the clinical practice.
Related papers
- Detection-Guided Deep Learning-Based Model with Spatial Regularization for Lung Nodule Segmentation [2.4044422838107438]
Lung cancer ranks as one of the leading causes of cancer diagnosis and is the foremost cause of cancer-related mortality worldwide.
The segmentation of lung nodules plays a critical role in aiding physicians in distinguishing between malignant and benign lesions.
We introduce a novel model for segmenting lung nodules in computed tomography (CT) images, leveraging a deep learning framework that integrates segmentation and classification processes.
arXiv Detail & Related papers (2024-10-26T11:58:12Z) - Double Integral Enhanced Zeroing Neural Network Optimized with ALSOA
fostered Lung Cancer Classification using CT Images [1.1510009152620668]
Lung cancer is one of the deadliest diseases and the leading cause of illness and death.
The proposed method attains 18.32%, 27.20%, and 34.32% higher accuracy analyzed with existing method.
arXiv Detail & Related papers (2023-12-05T10:53:35Z) - SGDA: Towards 3D Universal Pulmonary Nodule Detection via Slice Grouped
Domain Attention [47.44114201293201]
Lung cancer is the leading cause of cancer death worldwide.
Current pulmonary nodule detection methods are usually domain-specific.
We propose a slice grouped domain attention (SGDA) module to enhance the generalization capability of the pulmonary nodule detection networks.
arXiv Detail & Related papers (2023-03-07T03:17:49Z) - Image Synthesis with Disentangled Attributes for Chest X-Ray Nodule
Augmentation and Detection [52.93342510469636]
Lung nodule detection in chest X-ray (CXR) images is common to early screening of lung cancers.
Deep-learning-based Computer-Assisted Diagnosis (CAD) systems can support radiologists for nodule screening in CXR.
To alleviate the limited availability of such datasets, lung nodule synthesis methods are proposed for the sake of data augmentation.
arXiv Detail & Related papers (2022-07-19T16:38:48Z) - Siamese Encoder-based Spatial-Temporal Mixer for Growth Trend Prediction
of Lung Nodules on CT Scans [13.882367716329387]
In the management of lung nodules, we are desirable to predict evolution in terms of its diameter variation on Computed Tomography (CT) scans.
In order to improve the performance of growth trend prediction for lung nodules, it is vital to compare the changes of the same nodule in consecutive CT scans.
arXiv Detail & Related papers (2022-06-07T06:44:56Z) - Unsupervised Contrastive Learning based Transformer for Lung Nodule
Detection [6.693379403133435]
Early detection of lung nodules with computed tomography (CT) is critical for the longer survival of lung cancer patients and better quality of life.
Computer-aided detection/diagnosis (CAD) is proven valuable as a second or concurrent reader in this context.
accurate detection of lung nodules remains a challenge for such CAD systems and even radiologists due to variability in size, location, and appearance of lung nodules.
Motivated by recent computer vision techniques, here we present a self-supervised region-based 3D transformer model to identify lung nodules.
arXiv Detail & Related papers (2022-04-30T01:19:00Z) - Enhancing Cancer Prediction in Challenging Screen-Detected Incident Lung
Nodules Using Time-Series Deep Learning [2.744770849264355]
Lung cancer screening (LCS) using annual low-dose computed tomography (CT) scanning has been proven to significantly reduce lung cancer mortality.
Improving risk stratification of malignancy risk in lung nodules can be enhanced using machine/deep learning algorithms.
Here we show the performance of our time-series deep learning model (DeepCAD-NLM-L) which integrates multi-model information across three longitudinal data domains.
arXiv Detail & Related papers (2022-03-30T18:40:36Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
We adopted an approach based on using an ensemble of deep convolutionalneural networks for segmentation of lung CT scans.
Using our models we are able to segment the lesions, evaluatepatients dynamics, estimate relative volume of lungs affected by lesions and evaluate the lung damage stage.
arXiv Detail & Related papers (2021-05-25T12:06:55Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
We demonstrate the feasibility of in-vivo tumor type classification using hyperspectral imaging and deep learning.
Our best model achieves an AUC of 76.3%, significantly outperforming previous conventional and deep learning methods.
arXiv Detail & Related papers (2020-07-02T12:00:53Z) - Spatio-spectral deep learning methods for in-vivo hyperspectral
laryngeal cancer detection [49.32653090178743]
Early detection of head and neck tumors is crucial for patient survival.
Hyperspectral imaging (HSI) can be used for non-invasive detection of head and neck tumors.
We present multiple deep learning techniques for in-vivo laryngeal cancer detection based on HSI.
arXiv Detail & Related papers (2020-04-21T17:07:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.