Revolutionizing Disease Diagnosis: A Microservices-Based Architecture
for Privacy-Preserving and Efficient IoT Data Analytics Using Federated
Learning
- URL: http://arxiv.org/abs/2308.14017v1
- Date: Sun, 27 Aug 2023 06:31:43 GMT
- Title: Revolutionizing Disease Diagnosis: A Microservices-Based Architecture
for Privacy-Preserving and Efficient IoT Data Analytics Using Federated
Learning
- Authors: Safa Ben Atitallah, Maha Driss, Henda Ben Ghezala
- Abstract summary: Deep learning-based disease diagnosis applications are essential for accurate diagnosis at various disease stages.
By positioning processing resources closer to the device, a distributed computing paradigm has the potential to revolutionize disease diagnosis.
This study proposes a federated-based approach for IoT data analytics systems to satisfy privacy and performance requirements.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning-based disease diagnosis applications are essential for accurate
diagnosis at various disease stages. However, using personal data exposes
traditional centralized learning systems to privacy concerns. On the other
hand, by positioning processing resources closer to the device and enabling
more effective data analyses, a distributed computing paradigm has the
potential to revolutionize disease diagnosis. Scalable architectures for data
analytics are also crucial in healthcare, where data analytics results must
have low latency and high dependability and reliability. This study proposes a
microservices-based approach for IoT data analytics systems to satisfy privacy
and performance requirements by arranging entities into fine-grained, loosely
connected, and reusable collections. Our approach relies on federated learning,
which can increase disease diagnosis accuracy while protecting data privacy.
Additionally, we employ transfer learning to obtain more efficient models.
Using more than 5800 chest X-ray images for pneumonia detection from a publicly
available dataset, we ran experiments to assess the effectiveness of our
approach. Our experiments reveal that our approach performs better in
identifying pneumonia than other cutting-edge technologies, demonstrating our
approach's promising potential detection performance.
Related papers
- Distributed Federated Learning-Based Deep Learning Model for Privacy MRI Brain Tumor Detection [11.980634373191542]
Distributed training can facilitate the processing of large medical image datasets, and improve the accuracy and efficiency of disease diagnosis.
This paper presents an innovative approach to medical image classification, leveraging Federated Learning (FL) to address the dual challenges of data privacy and efficient disease diagnosis.
arXiv Detail & Related papers (2024-04-15T09:07:19Z) - Leveraging Federated Learning for Automatic Detection of Clopidogrel
Treatment Failures [0.8132630541462695]
In this study, we leverage federated learning strategies to address clopidogrel treatment failure detection.
We partitioned the data based on geographic centers and evaluated the performance of federated learning.
Our findings underscore the potential of federated learning in addressing clopidogrel treatment failure detection.
arXiv Detail & Related papers (2024-03-05T23:31:07Z) - Building Flexible, Scalable, and Machine Learning-ready Multimodal
Oncology Datasets [17.774341783844026]
This work proposes Multimodal Integration of Oncology Data System (MINDS)
MINDS is a flexible, scalable, and cost-effective metadata framework for efficiently fusing disparate data from public sources.
By harmonizing multimodal data, MINDS aims to potentially empower researchers with greater analytical ability.
arXiv Detail & Related papers (2023-09-30T15:44:39Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
The scarcity of labeled data for related diseases poses a huge challenge to an accurate diagnosis.
We propose a novel deep reinforcement learning framework, which introduces prior knowledge to direct the learning of diagnostic agents.
Our approach's performance was demonstrated using the well-known NIHX-ray 14 and CheXpert datasets.
arXiv Detail & Related papers (2023-06-02T01:46:31Z) - Application of federated learning techniques for arrhythmia
classification using 12-lead ECG signals [0.11184789007828977]
This work uses a Federated Learning (FL) privacy-preserving methodology to train AI models over heterogeneous sets of high-definition ECG.
We demonstrated comparable performance to models trained using CL, IID, and non-IID approaches.
arXiv Detail & Related papers (2022-08-23T14:21:16Z) - When Accuracy Meets Privacy: Two-Stage Federated Transfer Learning
Framework in Classification of Medical Images on Limited Data: A COVID-19
Case Study [77.34726150561087]
COVID-19 pandemic has spread rapidly and caused a shortage of global medical resources.
CNN has been widely utilized and verified in analyzing medical images.
arXiv Detail & Related papers (2022-03-24T02:09:41Z) - Distributed Learning Approaches for Automated Chest X-Ray Diagnosis [0.0]
We focus on strategies to cope with privacy issues when a consortium of healthcare institutions needs to train machine learning models for identifying a particular disease.
In particular, in our analysis we investigated the impact of different data distributions in client data and the possible policies on the frequency of data exchange between the institutions.
arXiv Detail & Related papers (2021-10-04T14:22:29Z) - FLOP: Federated Learning on Medical Datasets using Partial Networks [84.54663831520853]
COVID-19 Disease due to the novel coronavirus has caused a shortage of medical resources.
Different data-driven deep learning models have been developed to mitigate the diagnosis of COVID-19.
The data itself is still scarce due to patient privacy concerns.
We propose a simple yet effective algorithm, named textbfFederated textbfL textbfon Medical datasets using textbfPartial Networks (FLOP)
arXiv Detail & Related papers (2021-02-10T01:56:58Z) - Privacy-preserving medical image analysis [53.4844489668116]
We present PriMIA, a software framework designed for privacy-preserving machine learning (PPML) in medical imaging.
We show significantly better classification performance of a securely aggregated federated learning model compared to human experts on unseen datasets.
We empirically evaluate the framework's security against a gradient-based model inversion attack.
arXiv Detail & Related papers (2020-12-10T13:56:00Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
We present a deep learning framework that enables robust modeling in challenging scenarios.
Our results show that using 85% lesser labeled data, we can build predictive models that match the performance of classifiers trained in a large-scale data setting.
arXiv Detail & Related papers (2020-05-03T02:36:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.