Distributed Learning Approaches for Automated Chest X-Ray Diagnosis
- URL: http://arxiv.org/abs/2110.01474v1
- Date: Mon, 4 Oct 2021 14:22:29 GMT
- Title: Distributed Learning Approaches for Automated Chest X-Ray Diagnosis
- Authors: Edoardo Giacomello, Michele Cataldo, Daniele Loiacono, Pier Luca Lanzi
- Abstract summary: We focus on strategies to cope with privacy issues when a consortium of healthcare institutions needs to train machine learning models for identifying a particular disease.
In particular, in our analysis we investigated the impact of different data distributions in client data and the possible policies on the frequency of data exchange between the institutions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Learning has established in the latest years as a successful approach to
address a great variety of tasks. Healthcare is one of the most promising field
of application for Deep Learning approaches since it would allow to help
clinicians to analyze patient data and perform diagnoses. However, despite the
vast amount of data collected every year in hospitals and other clinical
institutes, privacy regulations on sensitive data - such as those related to
health - pose a serious challenge to the application of these methods. In this
work, we focus on strategies to cope with privacy issues when a consortium of
healthcare institutions needs to train machine learning models for identifying
a particular disease, comparing the performances of two recent distributed
learning approaches - Federated Learning and Split Learning - on the task of
Automated Chest X-Ray Diagnosis. In particular, in our analysis we investigated
the impact of different data distributions in client data and the possible
policies on the frequency of data exchange between the institutions.
Related papers
- A Survey of Few-Shot Learning for Biomedical Time Series [3.845248204742053]
Data-driven models have tremendous potential to assist clinical diagnosis and improve patient care.
An emerging approach to overcome the scarcity of labeled data is to augment AI methods with human-like capabilities to learn new tasks with limited examples, called few-shot learning.
This survey provides a comprehensive review and comparison of few-shot learning methods for biomedical time series applications.
arXiv Detail & Related papers (2024-05-03T21:22:27Z) - Leveraging Federated Learning for Automatic Detection of Clopidogrel
Treatment Failures [0.8132630541462695]
In this study, we leverage federated learning strategies to address clopidogrel treatment failure detection.
We partitioned the data based on geographic centers and evaluated the performance of federated learning.
Our findings underscore the potential of federated learning in addressing clopidogrel treatment failure detection.
arXiv Detail & Related papers (2024-03-05T23:31:07Z) - Revolutionizing Disease Diagnosis: A Microservices-Based Architecture
for Privacy-Preserving and Efficient IoT Data Analytics Using Federated
Learning [0.0]
Deep learning-based disease diagnosis applications are essential for accurate diagnosis at various disease stages.
By positioning processing resources closer to the device, a distributed computing paradigm has the potential to revolutionize disease diagnosis.
This study proposes a federated-based approach for IoT data analytics systems to satisfy privacy and performance requirements.
arXiv Detail & Related papers (2023-08-27T06:31:43Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
The scarcity of labeled data for related diseases poses a huge challenge to an accurate diagnosis.
We propose a novel deep reinforcement learning framework, which introduces prior knowledge to direct the learning of diagnostic agents.
Our approach's performance was demonstrated using the well-known NIHX-ray 14 and CheXpert datasets.
arXiv Detail & Related papers (2023-06-02T01:46:31Z) - Multi-confound regression adversarial network for deep learning-based
diagnosis on highly heterogenous clinical data [1.2891210250935143]
We developed a novel deep learning architecture, MUCRAN, to train a deep learning model on highly heterogeneous clinical data.
We trained MUCRAN using 16,821 clinical T1 Axial brain MRIs collected from Massachusetts General Hospital before 2019.
The model showed a robust performance of over 90% accuracy on newly collected data.
arXiv Detail & Related papers (2022-05-05T18:39:09Z) - When Accuracy Meets Privacy: Two-Stage Federated Transfer Learning
Framework in Classification of Medical Images on Limited Data: A COVID-19
Case Study [77.34726150561087]
COVID-19 pandemic has spread rapidly and caused a shortage of global medical resources.
CNN has been widely utilized and verified in analyzing medical images.
arXiv Detail & Related papers (2022-03-24T02:09:41Z) - Federated Cycling (FedCy): Semi-supervised Federated Learning of
Surgical Phases [57.90226879210227]
FedCy is a semi-supervised learning (FSSL) method that combines FL and self-supervised learning to exploit a decentralized dataset of both labeled and unlabeled videos.
We demonstrate significant performance gains over state-of-the-art FSSL methods on the task of automatic recognition of surgical phases.
arXiv Detail & Related papers (2022-03-14T17:44:53Z) - Practical Challenges in Differentially-Private Federated Survival
Analysis of Medical Data [57.19441629270029]
In this paper, we take advantage of the inherent properties of neural networks to federate the process of training of survival analysis models.
In the realistic setting of small medical datasets and only a few data centers, this noise makes it harder for the models to converge.
We propose DPFed-post which adds a post-processing stage to the private federated learning scheme.
arXiv Detail & Related papers (2022-02-08T10:03:24Z) - Efficient Symptom Inquiring and Diagnosis via Adaptive Alignment of
Reinforcement Learning and Classification [0.6415701940560564]
We first propose a novel method for medical automatic diagnosis with symptom inquiring and disease diagnosing formulated as a reinforcement learning task and a classification task, respectively.
We create a new dataset extracted from the MedlinePlus knowledge base that contains more diseases and more complete symptom information.
Experimental evaluation results show that our method outperforms three recent state-of-the-art methods on different datasets.
arXiv Detail & Related papers (2021-12-01T11:25:42Z) - FLOP: Federated Learning on Medical Datasets using Partial Networks [84.54663831520853]
COVID-19 Disease due to the novel coronavirus has caused a shortage of medical resources.
Different data-driven deep learning models have been developed to mitigate the diagnosis of COVID-19.
The data itself is still scarce due to patient privacy concerns.
We propose a simple yet effective algorithm, named textbfFederated textbfL textbfon Medical datasets using textbfPartial Networks (FLOP)
arXiv Detail & Related papers (2021-02-10T01:56:58Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
Clinical diagnosis, which aims to assign diagnosis codes for a patient based on the clinical note, plays an essential role in clinical decision-making.
We propose a novel framework to combine the inheritance-guided hierarchical assignment and co-occurrence graph propagation for clinical automatic diagnosis.
arXiv Detail & Related papers (2021-01-27T13:16:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.