Domain-Specificity Inducing Transformers for Source-Free Domain
Adaptation
- URL: http://arxiv.org/abs/2308.14023v1
- Date: Sun, 27 Aug 2023 07:04:51 GMT
- Title: Domain-Specificity Inducing Transformers for Source-Free Domain
Adaptation
- Authors: Sunandini Sanyal, Ashish Ramayee Asokan, Suvaansh Bhambri, Akshay
Kulkarni, Jogendra Nath Kundu, R. Venkatesh Babu
- Abstract summary: We build a framework that supports disentanglement and learning of domain-specific factors and task-specific factors.
We are the first to utilize vision transformers for domain adaptation in a privacy-oriented source-free setting.
- Score: 34.533493057674974
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conventional Domain Adaptation (DA) methods aim to learn domain-invariant
feature representations to improve the target adaptation performance. However,
we motivate that domain-specificity is equally important since in-domain
trained models hold crucial domain-specific properties that are beneficial for
adaptation. Hence, we propose to build a framework that supports
disentanglement and learning of domain-specific factors and task-specific
factors in a unified model. Motivated by the success of vision transformers in
several multi-modal vision problems, we find that queries could be leveraged to
extract the domain-specific factors. Hence, we propose a novel
Domain-specificity-inducing Transformer (DSiT) framework for disentangling and
learning both domain-specific and task-specific factors. To achieve
disentanglement, we propose to construct novel Domain-Representative Inputs
(DRI) with domain-specific information to train a domain classifier with a
novel domain token. We are the first to utilize vision transformers for domain
adaptation in a privacy-oriented source-free setting, and our approach achieves
state-of-the-art performance on single-source, multi-source, and multi-target
benchmarks
Related papers
- DomainVerse: A Benchmark Towards Real-World Distribution Shifts For
Tuning-Free Adaptive Domain Generalization [27.099706316752254]
We establish a novel dataset DomainVerse for Adaptive Domain Generalization (ADG)
Benefiting from the introduced hierarchical definition of domain shifts, DomainVerse consists of about 0.5 million images from 390 fine-grained realistic domains.
We propose two methods called Domain CLIP and Domain++ CLIP for tuning-free adaptive domain generalization.
arXiv Detail & Related papers (2024-03-05T07:10:25Z) - Revisiting the Domain Shift and Sample Uncertainty in Multi-source
Active Domain Transfer [69.82229895838577]
Active Domain Adaptation (ADA) aims to maximally boost model adaptation in a new target domain by actively selecting a limited number of target data to annotate.
This setting neglects the more practical scenario where training data are collected from multiple sources.
This motivates us to target a new and challenging setting of knowledge transfer that extends ADA from a single source domain to multiple source domains.
arXiv Detail & Related papers (2023-11-21T13:12:21Z) - Meta-causal Learning for Single Domain Generalization [102.53303707563612]
Single domain generalization aims to learn a model from a single training domain (source domain) and apply it to multiple unseen test domains (target domains)
Existing methods focus on expanding the distribution of the training domain to cover the target domains, but without estimating the domain shift between the source and target domains.
We propose a new learning paradigm, namely simulate-analyze-reduce, which first simulates the domain shift by building an auxiliary domain as the target domain, then learns to analyze the causes of domain shift, and finally learns to reduce the domain shift for model adaptation.
arXiv Detail & Related papers (2023-04-07T15:46:38Z) - Exploiting Domain-Specific Features to Enhance Domain Generalization [10.774902700296249]
Domain Generalization (DG) aims to train a model, from multiple observed source domains, in order to perform well on unseen target domains.
Prior DG approaches have focused on extracting domain-invariant information across sources to generalize on target domains.
We propose meta-Domain Specific-Domain Invariant (mD) - a novel theoretically sound framework.
arXiv Detail & Related papers (2021-10-18T15:42:39Z) - Self-Adversarial Disentangling for Specific Domain Adaptation [52.1935168534351]
Domain adaptation aims to bridge the domain shifts between the source and target domains.
Recent methods typically do not consider explicit prior knowledge on a specific dimension.
arXiv Detail & Related papers (2021-08-08T02:36:45Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
Unsupervised domain adaptation for object detection is a challenging problem with many real-world applications.
We propose a novel augmented feature alignment network (AFAN) which integrates intermediate domain image generation and domain-adversarial training.
Our approach significantly outperforms the state-of-the-art methods on standard benchmarks for both similar and dissimilar domain adaptations.
arXiv Detail & Related papers (2021-06-10T05:01:20Z) - Disentanglement-based Cross-Domain Feature Augmentation for Effective
Unsupervised Domain Adaptive Person Re-identification [87.72851934197936]
Unsupervised domain adaptive (UDA) person re-identification (ReID) aims to transfer the knowledge from the labeled source domain to the unlabeled target domain for person matching.
One challenge is how to generate target domain samples with reliable labels for training.
We propose a Disentanglement-based Cross-Domain Feature Augmentation strategy.
arXiv Detail & Related papers (2021-03-25T15:28:41Z) - Domain Conditioned Adaptation Network [90.63261870610211]
We propose a Domain Conditioned Adaptation Network (DCAN) to excite distinct convolutional channels with a domain conditioned channel attention mechanism.
This is the first work to explore the domain-wise convolutional channel activation for deep DA networks.
arXiv Detail & Related papers (2020-05-14T04:23:24Z) - Unsupervised Domain Adaptation with Progressive Domain Augmentation [34.887690018011675]
We propose a novel unsupervised domain adaptation method based on progressive domain augmentation.
The proposed method generates virtual intermediate domains via domain, progressively augments the source domain and bridges the source-target domain divergence.
We conduct experiments on multiple domain adaptation tasks and the results shows the proposed method achieves the state-of-the-art performance.
arXiv Detail & Related papers (2020-04-03T18:45:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.