A Bayesian Non-parametric Approach to Generative Models: Integrating Variational Autoencoder and Generative Adversarial Networks using Wasserstein and Maximum Mean Discrepancy
- URL: http://arxiv.org/abs/2308.14048v2
- Date: Sun, 22 Jun 2025 04:10:53 GMT
- Title: A Bayesian Non-parametric Approach to Generative Models: Integrating Variational Autoencoder and Generative Adversarial Networks using Wasserstein and Maximum Mean Discrepancy
- Authors: Forough Fazeli-Asl, Michael Minyi Zhang,
- Abstract summary: We propose a novel generative model within the Bayesian non-parametric learning (BNPL) framework to address some notable failure modes in generative adversarial networks (GANs) and variational autoencoders (VAEs)<n>We will demonstrate that the BNPL framework enhances training stability and provides robustness and accuracy guarantees when incorporating the Wasserstein distance and maximum mean discrepancy measure (WMMD) into our model's loss function.
- Score: 2.5109359014278954
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel generative model within the Bayesian non-parametric learning (BNPL) framework to address some notable failure modes in generative adversarial networks (GANs) and variational autoencoders (VAEs)--these being overfitting in the GAN case and noisy samples in the VAE case. We will demonstrate that the BNPL framework enhances training stability and provides robustness and accuracy guarantees when incorporating the Wasserstein distance and maximum mean discrepancy measure (WMMD) into our model's loss function. Moreover, we introduce a so-called ``triple model'' that combines the GAN, the VAE, and further incorporates a code-GAN (CGAN) to explore the latent space of the VAE. This triple model design generates high-quality, diverse samples, while the BNPL framework, leveraging the WMMD loss function, enhances training stability. Together, these components enable our model to achieve superior performance across various generative tasks. These claims are supported by both theoretical analyses and empirical validation on a wide variety of datasets.
Related papers
- Learning and Generating Diverse Residential Load Patterns Using GAN with Weakly-Supervised Training and Weight Selection [7.183964892282175]
This paper proposes a Generative Adversarial Network-based Synthetic Residential Load Pattern (RLP-GAN) generation model.<n>We develop a holistic evaluation method to validate the effectiveness of RLP-GAN using real-world data of 417 households.<n>We have publicly released the RLP-GAN generated synthetic dataset, which comprises one million synthetic residential load pattern profiles.
arXiv Detail & Related papers (2025-04-19T13:50:49Z) - D2C: Unlocking the Potential of Continuous Autoregressive Image Generation with Discrete Tokens [80.75893450536577]
We propose D2C, a novel two-stage method to enhance model generation capacity.
In the first stage, the discrete-valued tokens representing coarse-grained image features are sampled by employing a small discrete-valued generator.
In the second stage, the continuous-valued tokens representing fine-grained image features are learned conditioned on the discrete token sequence.
arXiv Detail & Related papers (2025-03-21T13:58:49Z) - Stabilize the Latent Space for Image Autoregressive Modeling: A Unified Perspective [52.778766190479374]
Latent-based image generative models have achieved notable success in image generation tasks.
Despite sharing the same latent space, autoregressive models significantly lag behind LDMs and MIMs in image generation.
We propose a simple but effective discrete image tokenizer to stabilize the latent space for image generative modeling.
arXiv Detail & Related papers (2024-10-16T12:13:17Z) - Meissonic: Revitalizing Masked Generative Transformers for Efficient High-Resolution Text-to-Image Synthesis [62.06970466554273]
We present Meissonic, which non-autoregressive masked image modeling (MIM) text-to-image elevates to a level comparable with state-of-the-art diffusion models like SDXL.
We leverage high-quality training data, integrate micro-conditions informed by human preference scores, and employ feature compression layers to further enhance image fidelity and resolution.
Our model not only matches but often exceeds the performance of existing models like SDXL in generating high-quality, high-resolution images.
arXiv Detail & Related papers (2024-10-10T17:59:17Z) - Steering Masked Discrete Diffusion Models via Discrete Denoising Posterior Prediction [88.65168366064061]
We introduce Discrete Denoising Posterior Prediction (DDPP), a novel framework that casts the task of steering pre-trained MDMs as a problem of probabilistic inference.
Our framework leads to a family of three novel objectives that are all simulation-free, and thus scalable.
We substantiate our designs via wet-lab validation, where we observe transient expression of reward-optimized protein sequences.
arXiv Detail & Related papers (2024-10-10T17:18:30Z) - VAE-QWGAN: Addressing Mode Collapse in Quantum GANs via Autoencoding Priors [3.823356975862005]
VAE-QWGAN combines the strengths of a classical Variational AutoEncoder (VAE) with a hybrid Quantum Wasserstein GAN (QWGAN)<n>We show that VAE-QWGAN demonstrates significant improvement over existing QGAN approaches.
arXiv Detail & Related papers (2024-09-16T14:52:22Z) - Elucidating Optimal Reward-Diversity Tradeoffs in Text-to-Image Diffusion Models [20.70550870149442]
We introduce Annealed Importance Guidance (AIG), an inference-time regularization inspired by Annealed Importance Sampling.
Our experiments demonstrate the benefits of AIG for Stable Diffusion models, striking the optimal balance between reward optimization and image diversity.
arXiv Detail & Related papers (2024-09-09T16:27:26Z) - DiffSG: A Generative Solver for Network Optimization with Diffusion Model [75.27274046562806]
Diffusion generative models can consider a broader range of solutions and exhibit stronger generalization by learning parameters.
We propose a new framework, which leverages intrinsic distribution learning of diffusion generative models to learn high-quality solutions.
arXiv Detail & Related papers (2024-08-13T07:56:21Z) - An improved tabular data generator with VAE-GMM integration [9.4491536689161]
We propose a novel Variational Autoencoder (VAE)-based model that addresses limitations of current approaches.
Inspired by the TVAE model, our approach incorporates a Bayesian Gaussian Mixture model (BGM) within the VAE architecture.
We thoroughly validate our model on three real-world datasets with mixed data types, including two medically relevant ones.
arXiv Detail & Related papers (2024-04-12T12:31:06Z) - The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
Federated learning has the risk of skewing fine-tuning features and compromising the robustness of the model.
We introduce three robustness indicators and conduct experiments across diverse robust datasets.
Our approach markedly enhances the robustness across diverse scenarios, encompassing various parameter-efficient fine-tuning methods.
arXiv Detail & Related papers (2024-01-25T09:18:51Z) - Discrete Diffusion Modeling by Estimating the Ratios of the Data Distribution [67.9215891673174]
We propose score entropy as a novel loss that naturally extends score matching to discrete spaces.
We test our Score Entropy Discrete Diffusion models on standard language modeling tasks.
arXiv Detail & Related papers (2023-10-25T17:59:12Z) - DomainStudio: Fine-Tuning Diffusion Models for Domain-Driven Image
Generation using Limited Data [20.998032566820907]
This paper proposes a novel DomainStudio approach to adapt DDPMs pre-trained on large-scale source datasets to target domains using limited data.
It is designed to keep the diversity of subjects provided by source domains and get high-quality and diverse adapted samples in target domains.
arXiv Detail & Related papers (2023-06-25T07:40:39Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
Diffusion models (DMs) have been introduced in image deblurring and exhibited promising performance.
We propose the Hierarchical Integration Diffusion Model (HI-Diff), for realistic image deblurring.
Experiments on synthetic and real-world blur datasets demonstrate that our HI-Diff outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-05-22T12:18:20Z) - Nonparametric Generative Modeling with Conditional Sliced-Wasserstein
Flows [101.31862036510701]
Sliced-Wasserstein Flow (SWF) is a promising approach to nonparametric generative modeling but has not been widely adopted due to its suboptimal generative quality and lack of conditional modeling capabilities.
We propose Conditional Sliced-Wasserstein Flow (CSWF), a simple yet effective extension of SWF that enables nonparametric conditional modeling.
arXiv Detail & Related papers (2023-05-03T14:55:43Z) - Tailoring Language Generation Models under Total Variation Distance [55.89964205594829]
The standard paradigm of neural language generation adopts maximum likelihood estimation (MLE) as the optimizing method.
We develop practical bounds to apply it to language generation.
We introduce the TaiLr objective that balances the tradeoff of estimating TVD.
arXiv Detail & Related papers (2023-02-26T16:32:52Z) - Auto-regressive Image Synthesis with Integrated Quantization [55.51231796778219]
This paper presents a versatile framework for conditional image generation.
It incorporates the inductive bias of CNNs and powerful sequence modeling of auto-regression.
Our method achieves superior diverse image generation performance as compared with the state-of-the-art.
arXiv Detail & Related papers (2022-07-21T22:19:17Z) - DiffuseVAE: Efficient, Controllable and High-Fidelity Generation from
Low-Dimensional Latents [26.17940552906923]
We present DiffuseVAE, a novel generative framework that integrates VAE within a diffusion model framework.
We show that the proposed model can generate high-resolution samples and exhibits quality comparable to state-of-the-art models on standard benchmarks.
arXiv Detail & Related papers (2022-01-02T06:44:23Z) - Global Context with Discrete Diffusion in Vector Quantised Modelling for
Image Generation [19.156223720614186]
The integration of Vector Quantised Variational AutoEncoder with autoregressive models as generation part has yielded high-quality results on image generation.
We show that with the help of a content-rich discrete visual codebook from VQ-VAE, the discrete diffusion model can also generate high fidelity images with global context.
arXiv Detail & Related papers (2021-12-03T09:09:34Z) - A Method for Evaluating Deep Generative Models of Images via Assessing
the Reproduction of High-order Spatial Context [9.00018232117916]
Generative adversarial networks (GANs) are one kind of DGM which are widely employed.
In this work, we demonstrate several objective tests of images output by two popular GAN architectures.
We designed several context models (SCMs) of distinct image features that can be recovered after generation by a trained GAN.
arXiv Detail & Related papers (2021-11-24T15:58:10Z) - Inferential Wasserstein Generative Adversarial Networks [9.859829604054127]
We introduce a novel inferential Wasserstein GAN (iWGAN) model, which is a principled framework to fuse auto-encoders and WGANs.
The iWGAN greatly mitigates the symptom of mode collapse, speeds up the convergence, and is able to provide a measurement of quality check for each individual sample.
arXiv Detail & Related papers (2021-09-13T00:43:21Z) - Model Selection for Bayesian Autoencoders [25.619565817793422]
We propose to optimize the distributional sliced-Wasserstein distance between the output of the autoencoder and the empirical data distribution.
We turn our BAE into a generative model by fitting a flexible Dirichlet mixture model in the latent space.
We evaluate our approach qualitatively and quantitatively using a vast experimental campaign on a number of unsupervised learning tasks and show that, in small-data regimes where priors matter, our approach provides state-of-the-art results.
arXiv Detail & Related papers (2021-06-11T08:55:00Z) - Learning High-Dimensional Distributions with Latent Neural Fokker-Planck
Kernels [67.81799703916563]
We introduce new techniques to formulate the problem as solving Fokker-Planck equation in a lower-dimensional latent space.
Our proposed model consists of latent-distribution morphing, a generator and a parameterized Fokker-Planck kernel function.
arXiv Detail & Related papers (2021-05-10T17:42:01Z) - Understanding Overparameterization in Generative Adversarial Networks [56.57403335510056]
Generative Adversarial Networks (GANs) are used to train non- concave mini-max optimization problems.
A theory has shown the importance of the gradient descent (GD) to globally optimal solutions.
We show that in an overized GAN with a $1$-layer neural network generator and a linear discriminator, the GDA converges to a global saddle point of the underlying non- concave min-max problem.
arXiv Detail & Related papers (2021-04-12T16:23:37Z) - Deep Autoencoding Topic Model with Scalable Hybrid Bayesian Inference [55.35176938713946]
We develop deep autoencoding topic model (DATM) that uses a hierarchy of gamma distributions to construct its multi-stochastic-layer generative network.
We propose a Weibull upward-downward variational encoder that deterministically propagates information upward via a deep neural network, followed by a downward generative model.
The efficacy and scalability of our models are demonstrated on both unsupervised and supervised learning tasks on big corpora.
arXiv Detail & Related papers (2020-06-15T22:22:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.