Multi-Task Learning for Routing Problem with Cross-Problem Zero-Shot Generalization
- URL: http://arxiv.org/abs/2402.16891v2
- Date: Fri, 12 Apr 2024 15:34:18 GMT
- Title: Multi-Task Learning for Routing Problem with Cross-Problem Zero-Shot Generalization
- Authors: Fei Liu, Xi Lin, Zhenkun Wang, Qingfu Zhang, Xialiang Tong, Mingxuan Yuan,
- Abstract summary: Vehicle routing problems (VRPs) can be found in numerous real-world applications.
In this work, we make the first attempt to tackle the crucial challenge of cross-problem generalization.
Our proposed model can successfully solve VRPs with unseen attribute combinations in a zero-shot generalization manner.
- Score: 18.298695520665348
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vehicle routing problems (VRPs), which can be found in numerous real-world applications, have been an important research topic for several decades. Recently, the neural combinatorial optimization (NCO) approach that leverages a learning-based model to solve VRPs without manual algorithm design has gained substantial attention. However, current NCO methods typically require building one model for each routing problem, which significantly hinders their practical application for real-world industry problems with diverse attributes. In this work, we make the first attempt to tackle the crucial challenge of cross-problem generalization. In particular, we formulate VRPs as different combinations of a set of shared underlying attributes and solve them simultaneously via a single model through attribute composition. In this way, our proposed model can successfully solve VRPs with unseen attribute combinations in a zero-shot generalization manner. Extensive experiments are conducted on eleven VRP variants, benchmark datasets, and industry logistic scenarios. The results show that the unified model demonstrates superior performance in the eleven VRPs, reducing the average gap to around 5% from over 20% in the existing approach and achieving a significant performance boost on benchmark datasets as well as a real-world logistics application. The source code is included in https://github.com/FeiLiu36/MTNCO.
Related papers
- Joint Demonstration and Preference Learning Improves Policy Alignment with Human Feedback [58.049113055986375]
We develop a single stage approach named Alignment with Integrated Human Feedback (AIHF) to train reward models and the policy.
The proposed approach admits a suite of efficient algorithms, which can easily reduce to, and leverage, popular alignment algorithms.
We demonstrate the efficiency of the proposed solutions with extensive experiments involving alignment problems in LLMs and robotic control problems in MuJoCo.
arXiv Detail & Related papers (2024-06-11T01:20:53Z) - Improving Generalization of Neural Vehicle Routing Problem Solvers Through the Lens of Model Architecture [9.244633039170186]
We propose a plug-and-play Entropy-based Scaling Factor (ESF) and a Distribution-Specific (DS) decoder.
ESF adjusts the attention weight pattern of the model towards familiar ones discovered during training when solving VRPs of varying sizes.
DS decoder explicitly models VRPs of multiple training distribution patterns through multiple auxiliary light decoders, expanding the model representation space.
arXiv Detail & Related papers (2024-06-10T09:03:17Z) - Prompt Learning for Generalized Vehicle Routing [17.424910810870273]
This work investigates an efficient prompt learning approach in Neural optimization for cross-distribution adaptation.
The proposed model learns a set of prompts among various distributions and then selects the best-matched one to prompt a pre-trained attention model for each problem instance.
It also outperforms existing generalized models on both in-distribution prediction and zero-shot generalization to a diverse set of new tasks.
arXiv Detail & Related papers (2024-05-20T15:42:23Z) - MVMoE: Multi-Task Vehicle Routing Solver with Mixture-of-Experts [26.790392171537754]
We propose a multi-task vehicle routing solver with mixture-of-experts (MVMoE)
We develop a hierarchical gating mechanism for the MVMoE, delivering a good trade-off between empirical performance and computational complexity.
Experimentally, our method significantly promotes zero-shot generalization performance on 10 unseen VRP variants.
arXiv Detail & Related papers (2024-05-02T06:02:07Z) - An Efficient Learning-based Solver Comparable to Metaheuristics for the
Capacitated Arc Routing Problem [67.92544792239086]
We introduce an NN-based solver to significantly narrow the gap with advanced metaheuristics.
First, we propose direction-aware facilitating attention model (DaAM) to incorporate directionality into the embedding process.
Second, we design a supervised reinforcement learning scheme that involves supervised pre-training to establish a robust initial policy.
arXiv Detail & Related papers (2024-03-11T02:17:42Z) - Towards Generalizable Neural Solvers for Vehicle Routing Problems via Ensemble with Transferrable Local Policy [24.91781032046481]
Many neural construction methods for Vehicle Routing Problems(VRPs) focus on synthetic problem instances with specified node distributions and limited scales.
We design an auxiliary policy that learns from the local transferable topological features, named local policy, and integrate it with a typical construction policy to form an ensemble policy.
With joint training, the aggregated policies perform cooperatively and complementarily to boost generalization.
arXiv Detail & Related papers (2023-08-27T13:22:50Z) - Towards Omni-generalizable Neural Methods for Vehicle Routing Problems [14.210085924625705]
This paper studies a challenging yet realistic setting, which considers generalization across both size and distribution in VRPs.
We propose a generic meta-learning framework, which enables effective training of an model with the capability of fast adaptation to new tasks during inference.
arXiv Detail & Related papers (2023-05-31T06:14:34Z) - Reinforcement Learning for Branch-and-Bound Optimisation using
Retrospective Trajectories [72.15369769265398]
Machine learning has emerged as a promising paradigm for branching.
We propose retro branching; a simple yet effective approach to RL for branching.
We outperform the current state-of-the-art RL branching algorithm by 3-5x and come within 20% of the best IL method's performance on MILPs with 500 constraints and 1000 variables.
arXiv Detail & Related papers (2022-05-28T06:08:07Z) - RoMA: Robust Model Adaptation for Offline Model-based Optimization [115.02677045518692]
We consider the problem of searching an input maximizing a black-box objective function given a static dataset of input-output queries.
A popular approach to solving this problem is maintaining a proxy model that approximates the true objective function.
Here, the main challenge is how to avoid adversarially optimized inputs during the search.
arXiv Detail & Related papers (2021-10-27T05:37:12Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
Decentralized training of deep learning models is a key element for enabling data privacy and on-device learning over networks.
In realistic learning scenarios, the presence of heterogeneity across different clients' local datasets poses an optimization challenge.
We propose a novel momentum-based method to mitigate this decentralized training difficulty.
arXiv Detail & Related papers (2021-02-09T11:27:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.