FATE: A Prompt-Tuning-Based Semi-Supervised Learning Framework for Extremely Limited Labeled Data
- URL: http://arxiv.org/abs/2504.09828v1
- Date: Mon, 14 Apr 2025 02:54:28 GMT
- Title: FATE: A Prompt-Tuning-Based Semi-Supervised Learning Framework for Extremely Limited Labeled Data
- Authors: Hezhao Liu, Yang Lu, Mengke Li, Yiqun Zhang, Shreyank N Gowda, Chen Gong, Hanzi Wang,
- Abstract summary: Semi-supervised learning (SSL) has achieved significant progress by leveraging both labeled data and unlabeled data.<n>We propose Firstly Adapt, Then catEgorize (FATE), a novel SSL framework tailored for scenarios with extremely limited labeled data.<n>FATE exploits unlabeled data to compensate for scarce supervision signals, then transfers to downstream tasks.
- Score: 36.21759320898034
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semi-supervised learning (SSL) has achieved significant progress by leveraging both labeled data and unlabeled data. Existing SSL methods overlook a common real-world scenario when labeled data is extremely scarce, potentially as limited as a single labeled sample in the dataset. General SSL approaches struggle to train effectively from scratch under such constraints, while methods utilizing pre-trained models often fail to find an optimal balance between leveraging limited labeled data and abundant unlabeled data. To address this challenge, we propose Firstly Adapt, Then catEgorize (FATE), a novel SSL framework tailored for scenarios with extremely limited labeled data. At its core, the two-stage prompt tuning paradigm FATE exploits unlabeled data to compensate for scarce supervision signals, then transfers to downstream tasks. Concretely, FATE first adapts a pre-trained model to the feature distribution of downstream data using volumes of unlabeled samples in an unsupervised manner. It then applies an SSL method specifically designed for pre-trained models to complete the final classification task. FATE is designed to be compatible with both vision and vision-language pre-trained models. Extensive experiments demonstrate that FATE effectively mitigates challenges arising from the scarcity of labeled samples in SSL, achieving an average performance improvement of 33.74% across seven benchmarks compared to state-of-the-art SSL methods. Code is available at https://anonymous.4open.science/r/Semi-supervised-learning-BA72.
Related papers
- FlatMatch: Bridging Labeled Data and Unlabeled Data with Cross-Sharpness
for Semi-Supervised Learning [73.13448439554497]
Semi-Supervised Learning (SSL) has been an effective way to leverage abundant unlabeled data with extremely scarce labeled data.
Most SSL methods are commonly based on instance-wise consistency between different data transformations.
We propose FlatMatch which minimizes a cross-sharpness measure to ensure consistent learning performance between the two datasets.
arXiv Detail & Related papers (2023-10-25T06:57:59Z) - Semi-Supervised Learning in the Few-Shot Zero-Shot Scenario [14.916971861796384]
Semi-Supervised Learning (SSL) is a framework that utilizes both labeled and unlabeled data to enhance model performance.
We propose a general approach to augment existing SSL methods, enabling them to handle situations where certain classes are missing.
Our experimental results reveal significant improvements in accuracy when compared to state-of-the-art SSL, open-set SSL, and open-world SSL methods.
arXiv Detail & Related papers (2023-08-27T14:25:07Z) - Pseudo-Labeling Based Practical Semi-Supervised Meta-Training for Few-Shot Learning [93.63638405586354]
We propose a simple and effective meta-training framework, called pseudo-labeling based meta-learning (PLML)
Firstly, we train a classifier via common semi-supervised learning (SSL) and use it to obtain the pseudo-labels of unlabeled data.
We build few-shot tasks from labeled and pseudo-labeled data and design a novel finetuning method with feature smoothing and noise suppression.
arXiv Detail & Related papers (2022-07-14T10:53:53Z) - ADT-SSL: Adaptive Dual-Threshold for Semi-Supervised Learning [68.53717108812297]
Semi-Supervised Learning (SSL) has advanced classification tasks by inputting both labeled and unlabeled data to train a model jointly.
This paper proposes an Adaptive Dual-Threshold method for Semi-Supervised Learning (ADT-SSL)
Experimental results show that the proposed ADT-SSL achieves state-of-the-art classification accuracy.
arXiv Detail & Related papers (2022-05-21T11:52:08Z) - Revisiting Pretraining for Semi-Supervised Learning in the Low-Label
Regime [15.863530936691157]
Semi-supervised learning (SSL) addresses the lack of labeled data by exploiting large unlabeled data through pseudolabeling.
Recent studies combined finetuning (FT) from pretrained weights with SSL to mitigate the challenges and claimed superior results in the low-label regime.
arXiv Detail & Related papers (2022-05-06T03:53:25Z) - Dash: Semi-Supervised Learning with Dynamic Thresholding [72.74339790209531]
We propose a semi-supervised learning (SSL) approach that uses unlabeled examples to train models.
Our proposed approach, Dash, enjoys its adaptivity in terms of unlabeled data selection.
arXiv Detail & Related papers (2021-09-01T23:52:29Z) - Trash to Treasure: Harvesting OOD Data with Cross-Modal Matching for
Open-Set Semi-Supervised Learning [101.28281124670647]
Open-set semi-supervised learning (open-set SSL) investigates a challenging but practical scenario where out-of-distribution (OOD) samples are contained in the unlabeled data.
We propose a novel training mechanism that could effectively exploit the presence of OOD data for enhanced feature learning.
Our approach substantially lifts the performance on open-set SSL and outperforms the state-of-the-art by a large margin.
arXiv Detail & Related papers (2021-08-12T09:14:44Z) - BiSTF: Bilateral-Branch Self-Training Framework for Semi-Supervised
Large-scale Fine-Grained Recognition [28.06659482245647]
Semi-supervised Fine-Grained Recognition is a challenge task due to data imbalance, high interclass similarity and domain mismatch.
We propose Bilateral-Branch Self-Training Framework (BiSTF) to improve existing semi-balanced and domain-shifted fine-grained data.
We show BiSTF outperforms the existing state-of-the-art SSL on Semi-iNat dataset.
arXiv Detail & Related papers (2021-07-14T15:28:54Z) - Self-Tuning for Data-Efficient Deep Learning [75.34320911480008]
Self-Tuning is a novel approach to enable data-efficient deep learning.
It unifies the exploration of labeled and unlabeled data and the transfer of a pre-trained model.
It outperforms its SSL and TL counterparts on five tasks by sharp margins.
arXiv Detail & Related papers (2021-02-25T14:56:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.