Prompt to Transfer: Sim-to-Real Transfer for Traffic Signal Control with
Prompt Learning
- URL: http://arxiv.org/abs/2308.14284v6
- Date: Sat, 20 Jan 2024 09:41:55 GMT
- Title: Prompt to Transfer: Sim-to-Real Transfer for Traffic Signal Control with
Prompt Learning
- Authors: Longchao Da, Minquan Gao, Hao Mei, Hua Wei
- Abstract summary: Large Language Models (LLMs) are trained on mass knowledge and proved to be equipped with astonishing inference abilities.
In this work, we leverage LLMs to understand and profile the system dynamics by a prompt-based grounded action transformation.
- Score: 4.195122359359966
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Numerous solutions are proposed for the Traffic Signal Control (TSC) tasks
aiming to provide efficient transportation and mitigate congestion waste. In
recent, promising results have been attained by Reinforcement Learning (RL)
methods through trial and error in simulators, bringing confidence in solving
cities' congestion headaches. However, there still exist performance gaps when
simulator-trained policies are deployed to the real world. This issue is mainly
introduced by the system dynamic difference between the training simulator and
the real-world environments. The Large Language Models (LLMs) are trained on
mass knowledge and proved to be equipped with astonishing inference abilities.
In this work, we leverage LLMs to understand and profile the system dynamics by
a prompt-based grounded action transformation. Accepting the cloze prompt
template, and then filling in the answer based on accessible context, the
pre-trained LLM's inference ability is exploited and applied to understand how
weather conditions, traffic states, and road types influence traffic dynamics,
being aware of this, the policies' action is taken and grounded based on
realistic dynamics, thus help the agent learn a more realistic policy. We
conduct experiments using DQN to show the effectiveness of the proposed
PromptGAT's ability in mitigating the performance gap from simulation to
reality (sim-to-real).
Related papers
- SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
We introduce SAFE-SIM, a controllable closed-loop safety-critical simulation framework.
Our approach yields two distinct advantages: 1) generating realistic long-tail safety-critical scenarios that closely reflect real-world conditions, and 2) providing controllable adversarial behavior for more comprehensive and interactive evaluations.
We validate our framework empirically using the nuScenes and nuPlan datasets across multiple planners, demonstrating improvements in both realism and controllability.
arXiv Detail & Related papers (2023-12-31T04:14:43Z) - Reinforcement Learning with Human Feedback for Realistic Traffic
Simulation [53.85002640149283]
Key element of effective simulation is the incorporation of realistic traffic models that align with human knowledge.
This study identifies two main challenges: capturing the nuances of human preferences on realism and the unification of diverse traffic simulation models.
arXiv Detail & Related papers (2023-09-01T19:29:53Z) - Uncertainty-aware Grounded Action Transformation towards Sim-to-Real
Transfer for Traffic Signal Control [3.6216188129806643]
We propose a simulation-to-real-world (sim-to-real) transfer approach called UGAT.
We evaluate our method on a simulated traffic environment and show that it significantly improves the performance of the transferred RL policy in the real world.
arXiv Detail & Related papers (2023-07-23T17:35:49Z) - A Platform-Agnostic Deep Reinforcement Learning Framework for Effective Sim2Real Transfer towards Autonomous Driving [0.0]
Deep Reinforcement Learning (DRL) has shown remarkable success in solving complex tasks.
transferring DRL agents to the real world is still challenging due to the significant discrepancies between simulation and reality.
We propose a robust DRL framework that leverages platform-dependent perception modules to extract task-relevant information.
arXiv Detail & Related papers (2023-04-14T07:55:07Z) - DeXtreme: Transfer of Agile In-hand Manipulation from Simulation to
Reality [64.51295032956118]
We train a policy that can perform robust dexterous manipulation on an anthropomorphic robot hand.
Our work reaffirms the possibilities of sim-to-real transfer for dexterous manipulation in diverse kinds of hardware and simulator setups.
arXiv Detail & Related papers (2022-10-25T01:51:36Z) - Cloud-Edge Training Architecture for Sim-to-Real Deep Reinforcement
Learning [0.8399688944263843]
Deep reinforcement learning (DRL) is a promising approach to solve complex control tasks by learning policies through interactions with the environment.
Sim-to-real approaches leverage simulations to pretrain DRL policies and then deploy them in the real world.
This work proposes a distributed cloud-edge architecture to train DRL agents in the real world in real-time.
arXiv Detail & Related papers (2022-03-04T10:27:01Z) - Learning Interactive Driving Policies via Data-driven Simulation [125.97811179463542]
Data-driven simulators promise high data-efficiency for driving policy learning.
Small underlying datasets often lack interesting and challenging edge cases for learning interactive driving.
We propose a simulation method that uses in-painted ado vehicles for learning robust driving policies.
arXiv Detail & Related papers (2021-11-23T20:14:02Z) - TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors [74.67698916175614]
We propose TrafficSim, a multi-agent behavior model for realistic traffic simulation.
In particular, we leverage an implicit latent variable model to parameterize a joint actor policy.
We show TrafficSim generates significantly more realistic and diverse traffic scenarios as compared to a diverse set of baselines.
arXiv Detail & Related papers (2021-01-17T00:29:30Z) - MetaVIM: Meta Variationally Intrinsic Motivated Reinforcement Learning for Decentralized Traffic Signal Control [54.162449208797334]
Traffic signal control aims to coordinate traffic signals across intersections to improve the traffic efficiency of a district or a city.
Deep reinforcement learning (RL) has been applied to traffic signal control recently and demonstrated promising performance where each traffic signal is regarded as an agent.
We propose a novel Meta Variationally Intrinsic Motivated (MetaVIM) RL method to learn the decentralized policy for each intersection that considers neighbor information in a latent way.
arXiv Detail & Related papers (2021-01-04T03:06:08Z) - CARLA Real Traffic Scenarios -- novel training ground and benchmark for
autonomous driving [8.287331387095545]
This work introduces interactive traffic scenarios in the CARLA simulator, which are based on real-world traffic.
We concentrate on tactical tasks lasting several seconds, which are especially challenging for current control methods.
The CARLA Real Traffic Scenarios (CRTS) is intended to be a training and testing ground for autonomous driving systems.
arXiv Detail & Related papers (2020-12-16T13:20:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.