Cloud-Edge Training Architecture for Sim-to-Real Deep Reinforcement
Learning
- URL: http://arxiv.org/abs/2203.02230v1
- Date: Fri, 4 Mar 2022 10:27:01 GMT
- Title: Cloud-Edge Training Architecture for Sim-to-Real Deep Reinforcement
Learning
- Authors: Hongpeng Cao, Mirco Theile, Federico G. Wyrwal, and Marco Caccamo
- Abstract summary: Deep reinforcement learning (DRL) is a promising approach to solve complex control tasks by learning policies through interactions with the environment.
Sim-to-real approaches leverage simulations to pretrain DRL policies and then deploy them in the real world.
This work proposes a distributed cloud-edge architecture to train DRL agents in the real world in real-time.
- Score: 0.8399688944263843
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep reinforcement learning (DRL) is a promising approach to solve complex
control tasks by learning policies through interactions with the environment.
However, the training of DRL policies requires large amounts of training
experiences, making it impractical to learn the policy directly on physical
systems. Sim-to-real approaches leverage simulations to pretrain DRL policies
and then deploy them in the real world. Unfortunately, the direct real-world
deployment of pretrained policies usually suffers from performance
deterioration due to the different dynamics, known as the reality gap. Recent
sim-to-real methods, such as domain randomization and domain adaptation, focus
on improving the robustness of the pretrained agents. Nevertheless, the
simulation-trained policies often need to be tuned with real-world data to
reach optimal performance, which is challenging due to the high cost of
real-world samples.
This work proposes a distributed cloud-edge architecture to train DRL agents
in the real world in real-time. In the architecture, the inference and training
are assigned to the edge and cloud, separating the real-time control loop from
the computationally expensive training loop. To overcome the reality gap, our
architecture exploits sim-to-real transfer strategies to continue the training
of simulation-pretrained agents on a physical system. We demonstrate its
applicability on a physical inverted-pendulum control system, analyzing
critical parameters. The real-world experiments show that our architecture can
adapt the pretrained DRL agents to unseen dynamics consistently and
efficiently.
Related papers
- Autonomous Vehicle Controllers From End-to-End Differentiable Simulation [60.05963742334746]
We propose a differentiable simulator and design an analytic policy gradients (APG) approach to training AV controllers.
Our proposed framework brings the differentiable simulator into an end-to-end training loop, where gradients of environment dynamics serve as a useful prior to help the agent learn a more grounded policy.
We find significant improvements in performance and robustness to noise in the dynamics, as well as overall more intuitive human-like handling.
arXiv Detail & Related papers (2024-09-12T11:50:06Z) - Grow Your Limits: Continuous Improvement with Real-World RL for Robotic
Locomotion [66.69666636971922]
We present APRL, a policy regularization framework that modulates the robot's exploration over the course of training.
APRL enables a quadrupedal robot to efficiently learn to walk entirely in the real world within minutes.
arXiv Detail & Related papers (2023-10-26T17:51:46Z) - Prompt to Transfer: Sim-to-Real Transfer for Traffic Signal Control with
Prompt Learning [4.195122359359966]
Large Language Models (LLMs) are trained on mass knowledge and proved to be equipped with astonishing inference abilities.
In this work, we leverage LLMs to understand and profile the system dynamics by a prompt-based grounded action transformation.
arXiv Detail & Related papers (2023-08-28T03:49:13Z) - Model-Based Reinforcement Learning with Multi-Task Offline Pretraining [59.82457030180094]
We present a model-based RL method that learns to transfer potentially useful dynamics and action demonstrations from offline data to a novel task.
The main idea is to use the world models not only as simulators for behavior learning but also as tools to measure the task relevance.
We demonstrate the advantages of our approach compared with the state-of-the-art methods in Meta-World and DeepMind Control Suite.
arXiv Detail & Related papers (2023-06-06T02:24:41Z) - A Platform-Agnostic Deep Reinforcement Learning Framework for Effective Sim2Real Transfer towards Autonomous Driving [0.0]
Deep Reinforcement Learning (DRL) has shown remarkable success in solving complex tasks.
transferring DRL agents to the real world is still challenging due to the significant discrepancies between simulation and reality.
We propose a robust DRL framework that leverages platform-dependent perception modules to extract task-relevant information.
arXiv Detail & Related papers (2023-04-14T07:55:07Z) - When to Trust Your Simulator: Dynamics-Aware Hybrid Offline-and-Online
Reinforcement Learning [7.786094194874359]
We propose the Dynamics-Aware Hybrid Offline-and-Online Reinforcement Learning (H2O) framework to provide an affirmative answer to this question.
H2O introduces a dynamics-aware policy evaluation scheme, which adaptively penalizes the Q function learning on simulated state-action pairs with large dynamics gaps.
We demonstrate the superior performance of H2O against other cross-domain online and offline RL algorithms.
arXiv Detail & Related papers (2022-06-27T17:18:11Z) - Robust Reinforcement Learning-based Autonomous Driving Agent for
Simulation and Real World [0.0]
We present a DRL-based algorithm that is capable of performing autonomous robot control using Deep Q-Networks (DQN)
In our approach, the agent is trained in a simulated environment and it is able to navigate both in a simulated and real-world environment.
The trained agent is able to run on limited hardware resources and its performance is comparable to state-of-the-art approaches.
arXiv Detail & Related papers (2020-09-23T15:23:54Z) - AWAC: Accelerating Online Reinforcement Learning with Offline Datasets [84.94748183816547]
We show that our method, advantage weighted actor critic (AWAC), enables rapid learning of skills with a combination of prior demonstration data and online experience.
Our results show that incorporating prior data can reduce the time required to learn a range of robotic skills to practical time-scales.
arXiv Detail & Related papers (2020-06-16T17:54:41Z) - RL-CycleGAN: Reinforcement Learning Aware Simulation-To-Real [74.45688231140689]
We introduce the RL-scene consistency loss for image translation, which ensures that the translation operation is invariant with respect to the Q-values associated with the image.
We obtain RL-CycleGAN, a new approach for simulation-to-real-world transfer for reinforcement learning.
arXiv Detail & Related papers (2020-06-16T08:58:07Z) - Sim-to-Real Transfer with Incremental Environment Complexity for
Reinforcement Learning of Depth-Based Robot Navigation [1.290382979353427]
Soft-Actor Critic (SAC) training strategy using incremental environment complexity is proposed to drastically reduce the need for additional training in the real world.
The application addressed is depth-based mapless navigation, where a mobile robot should reach a given waypoint in a cluttered environment with no prior mapping information.
arXiv Detail & Related papers (2020-04-30T10:47:02Z) - Meta-Reinforcement Learning for Robotic Industrial Insertion Tasks [70.56451186797436]
We study how to use meta-reinforcement learning to solve the bulk of the problem in simulation.
We demonstrate our approach by training an agent to successfully perform challenging real-world insertion tasks.
arXiv Detail & Related papers (2020-04-29T18:00:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.