CryptoBap: A Binary Analysis Platform for Cryptographic Protocols
- URL: http://arxiv.org/abs/2308.14450v2
- Date: Mon, 18 Sep 2023 06:16:02 GMT
- Title: CryptoBap: A Binary Analysis Platform for Cryptographic Protocols
- Authors: Faezeh Nasrabadi, Robert Künnemann, Hamed Nemati,
- Abstract summary: We introduce CryptoBap, a platform to verify weak secrecy and authentication for cryptographic protocols.
We achieve this by first transpiling the binary of protocols into an intermediate representation and then performing a crypto-aware symbolic execution.
We prove the soundness of the proposed approach and used CryptoBap to verify multiple case studies ranging from toy examples to real-world protocols.
- Score: 6.514727189942011
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce CryptoBap, a platform to verify weak secrecy and authentication for the (ARMv8 and RISC-V) machine code of cryptographic protocols. We achieve this by first transpiling the binary of protocols into an intermediate representation and then performing a crypto-aware symbolic execution to automatically extract a model of the protocol that represents all its execution paths. Our symbolic execution resolves indirect jumps and supports bounded loops using the loop-summarization technique, which we fully automate. The extracted model is then translated into models amenable to automated verification via ProVerif and CryptoVerif using a third-party toolchain. We prove the soundness of the proposed approach and used CryptoBap to verify multiple case studies ranging from toy examples to real-world protocols, TinySSH, an implementation of SSH, and WireGuard, a modern VPN protocol.
Related papers
- The Latency Price of Threshold Cryptosystem in Blockchains [52.359230560289745]
We study the interplay between threshold cryptography and a class of blockchains that use Byzantine-fault tolerant (BFT) consensus protocols.
Existing approaches for threshold cryptosystems introduce a latency overhead of at least one message delay for running the threshold cryptographic protocol.
We propose a mechanism to eliminate this overhead for blockchain-native threshold cryptosystems with tight thresholds.
arXiv Detail & Related papers (2024-07-16T20:53:04Z) - Point Intervention: Improving ACVP Test Vector Generation Through Human Assisted Fuzzing [1.6651146574124565]
We present a system providing the method and tools to produce well-covering tests in ACVP format for cryptographic libraries.
The system achieves better coverage than existing fuzzing methods by using a hybrid approach to fuzzing cryptographic primitives.
arXiv Detail & Related papers (2024-07-11T14:21:48Z) - Protocols to Code: Formal Verification of a Next-Generation Internet Router [9.971817718196997]
SCION routers run a cryptographic protocol for secure packet forwarding in an adversarial environment.
We verify both the protocol's network-wide security properties and low-level properties of its implementation.
This paper explains our approach, summarizes the main results, and distills lessons for the design and implementation of verifiable systems.
arXiv Detail & Related papers (2024-05-09T19:57:59Z) - Parallel Decoding via Hidden Transfer for Lossless Large Language Model Acceleration [54.897493351694195]
We propose a novel parallel decoding approach, namely textithidden transfer, which decodes multiple successive tokens simultaneously in a single forward pass.
In terms of acceleration metrics, we outperform all the single-model acceleration techniques, including Medusa and Self-Speculative decoding.
arXiv Detail & Related papers (2024-04-18T09:17:06Z) - CryptoVerif: a Computationally-Sound Security Protocol Verifier (Initial Version with Communications on Channels) [2.06682776181122]
This document presents the security protocol verifier CryptoVerif.
It does not rely on the symbolic, Dolev-Yao model, but on the computational model.
It can work automatically, or the user can guide it with manual proof indications.
arXiv Detail & Related papers (2023-10-23T07:53:38Z) - CryptoVampire: Automated Reasoning for the Complete Symbolic Attacker Cryptographic Model [8.838422697156195]
We introduce the CryptoVampire cryptographic protocol verifier, which for the first time fully automates proofs of trace properties in the BC Logic.
Key technical contribution is a first-order (FO) formalization of protocol properties with tailored handling of subterm relations.
On the theoretical side, we restrict full FO logic with cryptographic axioms to ensure that, by losing the expressivity of the HO BC Logic, we do not lose soundness.
arXiv Detail & Related papers (2023-05-20T11:26:51Z) - A Security Verification Framework of Cryptographic Protocols Using
Machine Learning [0.0]
We propose a security verification framework for cryptographic protocols using machine learning.
We create arbitrarily large datasets by automatically generating random protocols and assigning security labels to them.
We evaluate the proposed method by applying it to verification of practical cryptographic protocols.
arXiv Detail & Related papers (2023-04-26T02:37:43Z) - Publicly-Verifiable Deletion via Target-Collapsing Functions [81.13800728941818]
We show that targetcollapsing enables publiclyverifiable deletion (PVD)
We build on this framework to obtain a variety of primitives supporting publiclyverifiable deletion from weak cryptographic assumptions.
arXiv Detail & Related papers (2023-03-15T15:00:20Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Deep Reinforcement Learning with Label Embedding Reward for Supervised
Image Hashing [85.84690941656528]
We introduce a novel decision-making approach for deep supervised hashing.
We learn a deep Q-network with a novel label embedding reward defined by Bose-Chaudhuri-Hocquenghem codes.
Our approach outperforms state-of-the-art supervised hashing methods under various code lengths.
arXiv Detail & Related papers (2020-08-10T09:17:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.