Thetacrypt: A Distributed Service for Threshold Cryptography
- URL: http://arxiv.org/abs/2502.03247v1
- Date: Wed, 05 Feb 2025 15:03:59 GMT
- Title: Thetacrypt: A Distributed Service for Threshold Cryptography
- Authors: Mariarosaria Barbaraci, Noah Schmid, Orestis Alpos, Michael Senn, Christian Cachin,
- Abstract summary: Thetacrypt is a versatile library for integrating many threshold schemes into one language.
It offers a way to easily build distributed systems using threshold cryptography and is agnostic to their implementation.
The library currently includes six cryptographic schemes that span ciphers, signatures, and randomness generation.
- Score: 0.0
- License:
- Abstract: Threshold cryptography is a powerful and well-known technique with many applications to systems relying on distributed trust. It has recently emerged also as a solution to challenges in blockchain: frontrunning prevention, managing wallet keys, and generating randomness. This work presents Thetacrypt, a versatile library for integrating many threshold schemes into one codebase. It offers a way to easily build distributed systems using threshold cryptography and is agnostic to their implementation language. The architecture of Thetacrypt supports diverse protocols uniformly. The library currently includes six cryptographic schemes that span ciphers, signatures, and randomness generation. The library additionally contains a flexible adapter to an underlying networking layer that provides peer-to-peer communication and a total-order broadcast channel; the latter can be implemented by distributed ledgers, for instance. Thetacrypt serves as a controlled testbed for evaluating the performance of multiple threshold-cryptographic schemes under consistent conditions, showing how the traditional micro benchmarking approach neglects the distributed nature of the protocols and its relevance when considering system performance.
Related papers
- Atomic Transfer Graphs: Secure-by-design Protocols for Heterogeneous Blockchain Ecosystems [7.312229214872541]
We propose a framework for generating secure-by-design protocols that realize common security and functionality goals.
The resulting protocols build upon Timelock Contracts (CTLCs), a novel minimal smart contract functionality.
Our framework is the first to provide generic and provably secure protocols for all these use cases while matching or improving the performance of existing use-case-specific protocols.
arXiv Detail & Related papers (2025-01-29T17:25:53Z) - Cryptanalysis via Machine Learning Based Information Theoretic Metrics [58.96805474751668]
We propose two novel applications of machine learning (ML) algorithms to perform cryptanalysis on any cryptosystem.
These algorithms can be readily applied in an audit setting to evaluate the robustness of a cryptosystem.
We show that our classification model correctly identifies the encryption schemes that are not IND-CPA secure, such as DES, RSA, and AES ECB, with high accuracy.
arXiv Detail & Related papers (2025-01-25T04:53:36Z) - Secure Semantic Communication With Homomorphic Encryption [52.5344514499035]
This paper explores the feasibility of applying homomorphic encryption to SemCom.
We propose a task-oriented SemCom scheme secured through homomorphic encryption.
arXiv Detail & Related papers (2025-01-17T13:26:14Z) - Encrypted system identification as-a-service via reliable encrypted matrix inversion [0.0]
Encrypted computation opens up promising avenues across a plethora of application domains.
In particular, Arithmetic homomorphic encryption is a natural fit for cloud-based computational services.
This paper presents an encrypted system identification service enabled by a reliable encrypted solution to at least squares problems.
arXiv Detail & Related papers (2024-10-27T20:00:04Z) - Multi-Layered Security System: Integrating Quantum Key Distribution with Classical Cryptography to Enhance Steganographic Security [0.0]
We present a novel cryptographic system that integrates Quantum Key Distribution (QKD) with classical encryption techniques.
Our approach leverages the E91 QKD protocol to generate a shared secret key between communicating parties.
This key is then hashed using the Secure Hash Algorithm (SHA) to provide a fixedlength, high-entropy key.
arXiv Detail & Related papers (2024-08-13T15:20:29Z) - The Latency Price of Threshold Cryptosystem in Blockchains [52.359230560289745]
We study the interplay between threshold cryptography and a class of blockchains that use Byzantine-fault tolerant (BFT) consensus protocols.
Existing approaches for threshold cryptosystems introduce a latency overhead of at least one message delay for running the threshold cryptographic protocol.
We propose a mechanism to eliminate this overhead for blockchain-native threshold cryptosystems with tight thresholds.
arXiv Detail & Related papers (2024-07-16T20:53:04Z) - Coding-Based Hybrid Post-Quantum Cryptosystem for Non-Uniform Information [53.85237314348328]
We introduce for non-uniform messages a novel hybrid universal network coding cryptosystem (NU-HUNCC)
We show that NU-HUNCC is information-theoretic individually secured against an eavesdropper with access to any subset of the links.
arXiv Detail & Related papers (2024-02-13T12:12:39Z) - Secure Synthesis of Distributed Cryptographic Applications (Technical Report) [1.9707603524984119]
We advocate using secure program partitioning to synthesize cryptographic applications.
This approach is promising, but formal results for the security of such compilers are limited in scope.
We develop a compiler security proof that handles subtleties essential for robust, efficient applications.
arXiv Detail & Related papers (2024-01-06T02:57:44Z) - Revocable Cryptography from Learning with Errors [61.470151825577034]
We build on the no-cloning principle of quantum mechanics and design cryptographic schemes with key-revocation capabilities.
We consider schemes where secret keys are represented as quantum states with the guarantee that, once the secret key is successfully revoked from a user, they no longer have the ability to perform the same functionality as before.
arXiv Detail & Related papers (2023-02-28T18:58:11Z) - Recovering AES Keys with a Deep Cold Boot Attack [91.22679787578438]
Cold boot attacks inspect the corrupted random access memory soon after the power has been shut down.
In this work, we combine a novel cryptographic variant of a deep error correcting code technique with a modified SAT solver scheme to apply the attack on AES keys.
Our results show that our methods outperform the state of the art attack methods by a very large margin.
arXiv Detail & Related papers (2021-06-09T07:57:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.