Spoken Language Intelligence of Large Language Models for Language Learning
- URL: http://arxiv.org/abs/2308.14536v2
- Date: Wed, 05 Feb 2025 04:59:28 GMT
- Title: Spoken Language Intelligence of Large Language Models for Language Learning
- Authors: Linkai Peng, Baorian Nuchged, Yingming Gao,
- Abstract summary: We focus on evaluating the efficacy of large language models (LLMs) in the realm of education.
We introduce a new multiple-choice question dataset to evaluate the effectiveness of LLMs in the aforementioned scenarios.
We also investigate the influence of various prompting techniques such as zero- and few-shot method.
We find that models of different sizes have good understanding of concepts in phonetics, phonology, and second language acquisition, but show limitations in reasoning for real-world problems.
- Score: 3.1964044595140217
- License:
- Abstract: People have long hoped for a conversational system that can assist in real-life situations, and recent progress on large language models (LLMs) is bringing this idea closer to reality. While LLMs are often impressive in performance, their efficacy in real-world scenarios that demand expert knowledge remains unclear. LLMs are believed to hold the most potential and value in education, especially in the development of Artificial intelligence (AI) based virtual teachers capable of facilitating language learning. Our focus is centered on evaluating the efficacy of LLMs in the realm of education, specifically in the areas of spoken language learning which encompass phonetics, phonology, and second language acquisition. We introduce a new multiple-choice question dataset to evaluate the effectiveness of LLMs in the aforementioned scenarios, including understanding and application of spoken language knowledge. In addition, we investigate the influence of various prompting techniques such as zero- and few-shot method (prepending the question with question-answer exemplars), chain-of-thought (CoT, think step-by-step), in-domain exampler and external tools (Google, Wikipedia). We conducted large-scale evaluation on popular LLMs (20 distinct models) using these methods. We achieved significant performance improvements compared to the zero-shot baseline in the practical questions reasoning (GPT-3.5, 49.1% -> 63.1%; LLaMA2-70B-Chat, 42.2% -> 48.6%). We found that models of different sizes have good understanding of concepts in phonetics, phonology, and second language acquisition, but show limitations in reasoning for real-world problems. Additionally, we also explore preliminary findings on conversational communication.
Related papers
- The Rise and Down of Babel Tower: Investigating the Evolution Process of Multilingual Code Large Language Model [59.357993924917]
We study the evolution of multilingual capabilities in large language models (LLMs) during the pre-training process.
We propose the Babel Tower Hypothesis, which describes the entire process of LLMs acquiring new language capabilities.
We propose a novel method to construct an optimized pre-training corpus for multilingual code LLMs.
arXiv Detail & Related papers (2024-12-10T08:28:57Z) - How Do Multilingual Language Models Remember Facts? [50.13632788453612]
We show that previously identified recall mechanisms in English largely apply to multilingual contexts.
We localize the role of language during recall, finding that subject enrichment is language-independent.
In decoder-only LLMs, FVs compose these two pieces of information in two separate stages.
arXiv Detail & Related papers (2024-10-18T11:39:34Z) - Teaching LLMs to Abstain across Languages via Multilingual Feedback [40.84205285309612]
We show that multilingual feedback helps identify knowledge gaps across diverse languages, cultures, and communities.
Extensive experiments demonstrate that our multilingual feedback approach outperforms various strong baselines.
Further analysis reveals that multilingual feedback is both an effective and a more equitable abstain strategy to serve diverse language speakers.
arXiv Detail & Related papers (2024-06-22T21:59:12Z) - A Survey on Large Language Models with Multilingualism: Recent Advances and New Frontiers [51.8203871494146]
The rapid development of Large Language Models (LLMs) demonstrates remarkable multilingual capabilities in natural language processing.
Despite the breakthroughs of LLMs, the investigation into the multilingual scenario remains insufficient.
This survey aims to help the research community address multilingual problems and provide a comprehensive understanding of the core concepts, key techniques, and latest developments in multilingual natural language processing based on LLMs.
arXiv Detail & Related papers (2024-05-17T17:47:39Z) - FAC$^2$E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition [56.76951887823882]
Large language models (LLMs) are primarily evaluated by overall performance on various text understanding and generation tasks.
We present FAC$2$E, a framework for Fine-grAined and Cognition-grounded LLMs' Capability Evaluation.
arXiv Detail & Related papers (2024-02-29T21:05:37Z) - Linguistic Intelligence in Large Language Models for Telecommunications [5.06945923921948]
Large Language Models (LLMs) have emerged as a significant advancement in the field of Natural Language Processing (NLP)
This study seeks to evaluate the knowledge and understanding capabilities of LLMs within the telecommunications domain.
Our evaluation reveals that zero-shot LLMs can achieve performance levels comparable to the current state-of-the-art fine-tuned models.
arXiv Detail & Related papers (2024-02-24T14:01:07Z) - Empowering Language Models with Active Inquiry for Deeper Understanding [31.11672018840381]
We introduce LaMAI (Language Model with Active Inquiry), designed to endow large language models with interactive engagement.
LaMAI uses active learning techniques to raise the most informative questions, fostering a dynamic bidirectional dialogue.
Our empirical studies, across a variety of complex datasets, demonstrate the effectiveness of LaMAI.
arXiv Detail & Related papers (2024-02-06T05:24:16Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - Establishing Vocabulary Tests as a Benchmark for Evaluating Large
Language Models [2.7013338932521416]
We advocate for the revival of vocabulary tests as a valuable tool for assessing Large Language Models (LLMs) performance.
We evaluate seven LLMs using two vocabulary test formats across two languages and uncover surprising gaps in their lexical knowledge.
arXiv Detail & Related papers (2023-10-23T08:45:12Z) - Are Large Language Models Really Robust to Word-Level Perturbations? [68.60618778027694]
We propose a novel rational evaluation approach that leverages pre-trained reward models as diagnostic tools.
Longer conversations manifest the comprehensive grasp of language models in terms of their proficiency in understanding questions.
Our results demonstrate that LLMs frequently exhibit vulnerability to word-level perturbations that are commonplace in daily language usage.
arXiv Detail & Related papers (2023-09-20T09:23:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.