Scalable Algorithms for Power Function Calculations of quantum states in
NISQ Era
- URL: http://arxiv.org/abs/2308.14675v3
- Date: Sun, 24 Dec 2023 15:26:36 GMT
- Title: Scalable Algorithms for Power Function Calculations of quantum states in
NISQ Era
- Authors: Wencheng Zhao, Tingting Chen, Ruyu Yang
- Abstract summary: This article focuses on the development of scalable and quantum bit-efficient algorithms for computing power functions of random quantum states.
Two algorithms, based on Hadamard testing and Gate Set Tomography, are proposed.
- Score: 7.2223563491914
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This article focuses on the development of scalable and quantum bit-efficient
algorithms for computing power functions of random quantum states. Two
algorithms, based on Hadamard testing and Gate Set Tomography, are proposed. We
provide a comparative analysis of their computational outcomes, accompanied by
a meticulous evaluation of inherent errors in the gate set tomography approach.
The second algorithm exhibits a significant reduction in the utilization of
two-qubit gates compared to the first. As an illustration, we apply both
methods to compute the Von Neumann entropy of randomly generated quantum
states.
Related papers
- A quantum algorithm for advection-diffusion equation by a probabilistic imaginary-time evolution operator [0.0]
We propose a quantum algorithm for solving the linear advection-diffusion equation by employing a new approximate probabilistic imaginary-time evolution (PITE) operator.
We construct the explicit quantum circuit for realizing the imaginary-time evolution of the Hamiltonian coming from the advection-diffusion equation.
Our algorithm gives comparable result to the Harrow-Hassidim-Lloyd (HHL) algorithm with similar gate complexity, while we need much less ancillary qubits.
arXiv Detail & Related papers (2024-09-27T08:56:21Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - A quantum advantage over classical for local max cut [48.02822142773719]
Quantum optimization approximation algorithm (QAOA) has a computational advantage over comparable local classical techniques on degree-3 graphs.
Results hint that even small-scale quantum computation, which is relevant to the current state-of the art quantum hardware, could have significant advantages over comparably simple classical.
arXiv Detail & Related papers (2023-04-17T16:42:05Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Benchmarking Small-Scale Quantum Devices on Computing Graph Edit
Distance [52.77024349608834]
Graph Edit Distance (GED) measures the degree of (dis)similarity between two graphs in terms of the operations needed to make them identical.
In this paper we present a comparative study of two quantum approaches to computing GED.
arXiv Detail & Related papers (2021-11-19T12:35:26Z) - Optimization and Noise Analysis of the Quantum Algorithm for Solving
One-Dimensional Poisson Equation [17.65730040410185]
We propose an efficient quantum algorithm for solving one-dimensional Poisson equation.
We further develop this algorithm to make it closer to the real application on the noisy intermediate-scale quantum (NISQ) devices.
We analyze the effect of common noise existing in the real quantum devices on our algorithm using the IBM Qiskit toolkit.
arXiv Detail & Related papers (2021-08-27T09:44:41Z) - Synthesis of Quantum Circuits with an Island Genetic Algorithm [44.99833362998488]
Given a unitary matrix that performs certain operation, obtaining the equivalent quantum circuit is a non-trivial task.
Three problems are explored: the coin for the quantum walker, the Toffoli gate and the Fredkin gate.
The algorithm proposed proved to be efficient in decomposition of quantum circuits, and as a generic approach, it is limited only by the available computational power.
arXiv Detail & Related papers (2021-06-06T13:15:25Z) - Approximate Equivalence Checking of Noisy Quantum Circuits [8.36229449571485]
We study the problem of equivalence checking in the NISQ (Noisy Intermediate-Scale Quantum) computing realm where quantum noise is present inevitably.
The notion of approximate equivalence of (possibly noisy) quantum circuits is defined based on the Jamiolkowski fidelity.
We present two algorithms, aiming at different situations where the number of noises varies, for computing the fidelity between an ideal quantum circuit and its noisy implementation.
arXiv Detail & Related papers (2021-03-22T05:47:41Z) - Algorithmic Primitives for Quantum-Assisted Quantum Control [1.52292571922932]
We discuss two primitive algorithms to evaluate overlaps and transition matrix time series.
They are used to construct a variety of quantum-assisted quantum control algorithms implementable on NISQ devices.
arXiv Detail & Related papers (2020-11-27T15:20:29Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
Variational quantum algorithms are believed to be promising for solving computationally hard problems.
In this paper, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances.
Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
arXiv Detail & Related papers (2020-05-11T17:20:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.