Algorithmic Primitives for Quantum-Assisted Quantum Control
- URL: http://arxiv.org/abs/2011.13777v1
- Date: Fri, 27 Nov 2020 15:20:29 GMT
- Title: Algorithmic Primitives for Quantum-Assisted Quantum Control
- Authors: Guru-Vamsi Policharla and Sai Vinjanampathy
- Abstract summary: We discuss two primitive algorithms to evaluate overlaps and transition matrix time series.
They are used to construct a variety of quantum-assisted quantum control algorithms implementable on NISQ devices.
- Score: 1.52292571922932
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: We discuss two primitive algorithms to evaluate overlaps and transition
matrix time series, which are used to construct a variety of quantum-assisted
quantum control algorithms implementable on NISQ devices. Unlike previous
approaches, our method bypasses tomographically complete measurements and
instead relies solely on single qubit measurements. We analyse circuit
complexity of composed algorithms and sources of noise arising from
Trotterization and measurement errors.
Related papers
- The Algorithm for Solving Quantum Linear Systems of Equations With Coherent Superposition and Its Extended Applications [8.8400072344375]
We propose two quantum algorithms for solving quantum linear systems of equations with coherent superposition.
The two quantum algorithms can both compute the rank and general solution by one measurement.
Our analysis indicates that the proposed algorithms are mainly suitable for conducting attacks against lightweight symmetric ciphers.
arXiv Detail & Related papers (2024-05-11T03:03:14Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Improved Quantum Algorithms for Eigenvalues Finding and Gradient Descent [0.0]
Block encoding is a key ingredient in the recently developed quantum signal processing that forms a unifying framework for quantum algorithms.
In this article, we utilize block encoding to substantially enhance two previously proposed quantum algorithms.
We show how to extend our proposed method to different contexts, including matrix inversion and multiple eigenvalues estimation.
arXiv Detail & Related papers (2023-12-22T15:59:03Z) - Scalable Algorithms for Power Function Calculations of quantum states in
NISQ Era [7.2223563491914]
This article focuses on the development of scalable and quantum bit-efficient algorithms for computing power functions of random quantum states.
Two algorithms, based on Hadamard testing and Gate Set Tomography, are proposed.
arXiv Detail & Related papers (2023-08-28T16:08:17Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Detailed Account of Complexity for Implementation of Some Gate-Based
Quantum Algorithms [55.41644538483948]
In particular, some steps of the implementation, as state preparation and readout processes, can surpass the complexity aspects of the algorithm itself.
We present the complexity involved in the full implementation of quantum algorithms for solving linear systems of equations and linear system of differential equations.
arXiv Detail & Related papers (2021-06-23T16:33:33Z) - Synthesis of Quantum Circuits with an Island Genetic Algorithm [44.99833362998488]
Given a unitary matrix that performs certain operation, obtaining the equivalent quantum circuit is a non-trivial task.
Three problems are explored: the coin for the quantum walker, the Toffoli gate and the Fredkin gate.
The algorithm proposed proved to be efficient in decomposition of quantum circuits, and as a generic approach, it is limited only by the available computational power.
arXiv Detail & Related papers (2021-06-06T13:15:25Z) - A Grand Unification of Quantum Algorithms [0.0]
A number of quantum algorithms were recently tied together by a technique known as the quantum singular value transformation.
This paper provides a tutorial through these developments, first illustrating how quantum signal processing may be generalized to the quantum eigenvalue transform.
We then employ QSVT to construct intuitive quantum algorithms for search, phase estimation, and Hamiltonian simulation.
arXiv Detail & Related papers (2021-05-06T17:46:33Z) - Tunable Tradeoff between Quantum and Classical Computation via
Nonunitary Zeno-like Dynamics [0.5249805590164902]
We show that the algorithm scales similarly to the pure quantum version by deriving tight analytical lower bounds on its efficiency.
We also study the behavior of the algorithm subject to noise, and find that under certain oracle and operational errors our measurement-based algorithm outperforms the standard algorithm.
arXiv Detail & Related papers (2020-11-22T00:57:17Z) - Quantum Geometric Machine Learning for Quantum Circuits and Control [78.50747042819503]
We review and extend the application of deep learning to quantum geometric control problems.
We demonstrate enhancements in time-optimal control in the context of quantum circuit synthesis problems.
Our results are of interest to researchers in quantum control and quantum information theory seeking to combine machine learning and geometric techniques for time-optimal control problems.
arXiv Detail & Related papers (2020-06-19T19:12:14Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
Variational quantum algorithms are believed to be promising for solving computationally hard problems.
In this paper, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances.
Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
arXiv Detail & Related papers (2020-05-11T17:20:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.