Cavity-mediated long-range interactions in levitated optomechanics
- URL: http://arxiv.org/abs/2308.14721v1
- Date: Mon, 28 Aug 2023 17:24:23 GMT
- Title: Cavity-mediated long-range interactions in levitated optomechanics
- Authors: Jayadev Vijayan, Johannes Piotrowski, Carlos Gonzalez-Ballestero,
Kevin Weber, Oriol Romero-Isart and Lukas Novotny
- Abstract summary: We show for the first time programmable cavity-mediated interactions between nanoparticles in vacuum.
The interaction is mediated by photons scattered by spatially separated particles in a cavity.
Our work paves the way towards exploring many-body effects in nanoparticles with programmable cavity-mediated interactions, generating entanglement of motion, and using interacting particle arrays for optomechanical sensing.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ability to engineer cavity-mediated interactions has emerged as a
powerful tool for the generation of non-local correlations and the
investigation of non-equilibrium phenomena in many-body systems. Levitated
optomechanical systems have recently entered the multi-particle regime, with
promise for using arrays of massive strongly coupled oscillators for exploring
complex interacting systems and sensing. Here, by combining advances in
multi-particle optical levitation and cavity-based quantum control, we
demonstrate, for the first time, programmable cavity-mediated interactions
between nanoparticles in vacuum. The interaction is mediated by photons
scattered by spatially separated particles in a cavity, resulting in strong
coupling ($G_\text{zz}/\Omega_\text{z} = 0.238\pm0.005$) that does not decay
with distance within the cavity mode volume. We investigate the scaling of the
interaction strength with cavity detuning and inter-particle separation, and
demonstrate the tunability of interactions between different mechanical modes.
Our work paves the way towards exploring many-body effects in nanoparticle
arrays with programmable cavity-mediated interactions, generating entanglement
of motion, and using interacting particle arrays for optomechanical sensing.
Related papers
- Coupler enabled tunable dipole-dipole coupling between optically levitated nanoparticles [16.27312133509692]
We introduce a third nanoparticles as a coupler to two initially non-interacting nanoparticles, achieving tunable dipole-dipole coupling mediated by the third one.
Our method allows for precise control of interactions between any pair of adjacent particles in multi-particle systems.
arXiv Detail & Related papers (2024-08-12T16:11:49Z) - On-demand transposition across light-matter interaction regimes in
bosonic cQED [69.65384453064829]
Bosonic cQED employs the light field of high-Q superconducting cavities coupled to non-linear circuit elements.
We present the first experiment to achieve fast switching of the interaction regime without deteriorating the cavity coherence.
Our work opens up a new paradigm to probe the full range of light-matter interaction dynamics within a single platform.
arXiv Detail & Related papers (2023-12-22T13:01:32Z) - Cavity-Mediated Collective Momentum-Exchange Interactions [0.0]
We realize for the first time momentum-exchange interactions in which atoms exchange their momentum states via collective emission and absorption of photons from a common cavity mode.
The momentum-exchange interaction leads to an observed all-to-all Ising-like interaction in a matter-wave interferometer, which is useful for entanglement generation.
arXiv Detail & Related papers (2023-04-03T23:12:58Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Observation of strong and tunable light-induced dipole-dipole
interactions between optically levitated nanoparticles [0.0]
We show a new coupling mechanism that is orders of magnitude stronger and has new qualitative features.
Our results pave the way for a fully programmable many-body system of interacting nanoparticles with tunable dissipative and nonreciprocal interactions.
arXiv Detail & Related papers (2022-03-08T16:53:21Z) - Molecular Interactions Induced by a Static Electric Field in Quantum
Mechanics and Quantum Electrodynamics [68.98428372162448]
We study the interaction between two neutral atoms or molecules subject to a uniform static electric field.
Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions.
arXiv Detail & Related papers (2021-03-30T14:45:30Z) - Coherent Scattering-mediated correlations between levitated nanospheres [0.0]
We derive the many-particle Hamiltonian governing the unitary evolution of the system.
We also consider the effects of coupling the system to external environments and show that under reasonable experimental conditions entanglement can survive even at room temperature.
arXiv Detail & Related papers (2021-02-17T19:00:12Z) - Stationary Gaussian Entanglement between Levitated Nanoparticles [0.0]
Coherent scattering of photons is a novel mechanism of optomechanical coupling for optically levitated nanoparticles.
We show that it allows efficient deterministic generation of Gaussian entanglement between two particles in separate tweezers.
arXiv Detail & Related papers (2020-06-05T09:55:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.