Observation of strong and tunable light-induced dipole-dipole
interactions between optically levitated nanoparticles
- URL: http://arxiv.org/abs/2203.04198v2
- Date: Thu, 10 Mar 2022 11:44:48 GMT
- Title: Observation of strong and tunable light-induced dipole-dipole
interactions between optically levitated nanoparticles
- Authors: Jakob Rieser, Mario A. Ciampini, Henning Rudolph, Nikolai Kiesel,
Klaus Hornberger, Benjamin A. Stickler, Markus Aspelmeyer, Uro\v{s} Deli\'c
- Abstract summary: We show a new coupling mechanism that is orders of magnitude stronger and has new qualitative features.
Our results pave the way for a fully programmable many-body system of interacting nanoparticles with tunable dissipative and nonreciprocal interactions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Arrays of optically trapped nanoparticles have emerged as a promising
platform for the study of complex non-equilibrium phenomena. Analogous to
atomic many-body systems, one of the crucial ingredients is the ability to
precisely control the interactions between particles. However, the optical
interactions studied thus far only provide conservative optical binding forces
of limited tunability. Here we demonstrate a coupling mechanism that is orders
of magnitude stronger and has new qualitative features. These effects arise
from the previously unexplored phase coherence between the optical fields that
drive the light-induced dipole-dipole interaction. In addition, polarization
control allows us to observe electrostatic coupling between charged particles
in the array. Our results pave the way for a fully programmable many-body
system of interacting nanoparticles with tunable dissipative and nonreciprocal
interactions, which are instrumental for exploring entanglement and topological
phases in arrays of levitated nanoparticles.
Related papers
- Coupler enabled tunable dipole-dipole coupling between optically levitated nanoparticles [16.27312133509692]
We introduce a third nanoparticles as a coupler to two initially non-interacting nanoparticles, achieving tunable dipole-dipole coupling mediated by the third one.
Our method allows for precise control of interactions between any pair of adjacent particles in multi-particle systems.
arXiv Detail & Related papers (2024-08-12T16:11:49Z) - Directional spontaneous emission in photonic crystal slabs [49.1574468325115]
Spontaneous emission is a fundamental out-of-equilibrium process in which an excited quantum emitter relaxes to the ground state due to quantum fluctuations.
One way to modify these photon-mediated interactions is to alter the dipole radiation patterns of the emitter, e.g., by placing photonic crystals near them.
Our study delves into the interaction between these directional emission patterns and the aforementioned variables, revealing the untapped potential to fine-tune collective quantum optical phenomena.
arXiv Detail & Related papers (2023-12-04T15:35:41Z) - Non-Hermitian dynamics and nonreciprocity of optically coupled
nanoparticles [0.0]
We use this tunability to investigate the collective non-Hermitian dynamics of two nonreciprocally and nonlinearly interacting nanoparticles.
This work opens up a research avenue of nonequilibrium multi-particle collective effects, tailored by the dynamic control of individual sites in a tweezer array.
arXiv Detail & Related papers (2023-10-04T06:50:28Z) - Cavity-mediated long-range interactions in levitated optomechanics [0.0]
We show for the first time programmable cavity-mediated interactions between nanoparticles in vacuum.
The interaction is mediated by photons scattered by spatially separated particles in a cavity.
Our work paves the way towards exploring many-body effects in nanoparticles with programmable cavity-mediated interactions, generating entanglement of motion, and using interacting particle arrays for optomechanical sensing.
arXiv Detail & Related papers (2023-08-28T17:24:23Z) - The strongly driven Fermi polaron [49.81410781350196]
Quasiparticles are emergent excitations of matter that underlie much of our understanding of quantum many-body systems.
We take advantage of the clean setting of homogeneous quantum gases and fast radio-frequency control to manipulate Fermi polarons.
We measure the decay rate and the quasiparticle residue of the driven polaron from the Rabi oscillations between the two internal states.
arXiv Detail & Related papers (2023-08-10T17:59:51Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Optical-force-mediated coupling between levitated nanospheres can go
ultrastrong [0.0]
We investigate the effect of optical-force-mediated interactions onto the quantum dynamics of a pair of nanospheres optically trapped in two neighboring optical tweezers.
Thanks to the interference between the tweezer beams and the elastically scattered light by the other nanosphere, the effective inter nanosphere coupling can reach the ultrastrong coupling regime.
arXiv Detail & Related papers (2022-03-18T18:59:59Z) - Photon-mediated interactions near a Dirac photonic crystal slab [68.8204255655161]
We develop a theory of dipole radiation near photonic Dirac points in realistic structures.
We find positions where the nature of the collective interactions change from being coherent to dissipative ones.
Our results significantly improve the knowledge of Dirac light-matter interfaces.
arXiv Detail & Related papers (2021-07-01T14:21:49Z) - Molecular Interactions Induced by a Static Electric Field in Quantum
Mechanics and Quantum Electrodynamics [68.98428372162448]
We study the interaction between two neutral atoms or molecules subject to a uniform static electric field.
Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions.
arXiv Detail & Related papers (2021-03-30T14:45:30Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Stationary Gaussian Entanglement between Levitated Nanoparticles [0.0]
Coherent scattering of photons is a novel mechanism of optomechanical coupling for optically levitated nanoparticles.
We show that it allows efficient deterministic generation of Gaussian entanglement between two particles in separate tweezers.
arXiv Detail & Related papers (2020-06-05T09:55:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.