A polynomial quantum computing algorithm for solving the dualization
problem
- URL: http://arxiv.org/abs/2308.14819v1
- Date: Mon, 28 Aug 2023 18:12:54 GMT
- Title: A polynomial quantum computing algorithm for solving the dualization
problem
- Authors: Mauro Mezzini, Fernando Cuartero Gomez, Fernando Pelayo, Jose Javier
Paulet Gonzales, Hernan Indibil de la Cruz Calvo, Vicente Pascual
- Abstract summary: Given two monotone prime functions $f:0,1n to 0,1$ and $g:0,1n to 0,1$ the dualization problem consists in determining if $g$ is the dual of $f$.
We present a quantum computing algorithm that solves the decision version of the dualization problem in time.
- Score: 75.38606213726906
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Given two prime monotone boolean functions $f:\{0,1\}^n \to \{0,1\}$ and
$g:\{0,1\}^n \to \{0,1\}$ the dualization problem consists in determining if
$g$ is the dual of $f$, that is if $f(x_1, \dots, x_n)=
\overline{g}(\overline{x_1}, \dots \overline{x_n})$ for all $(x_1, \dots x_n)
\in \{0,1\}^n$. Associated to the dualization problem there is the
corresponding decision problem: given two monotone prime boolean functions $f$
and $g$ is $g$ the dual of $f$? In this paper we present a quantum computing
algorithm that solves the decision version of the dualization problem in
polynomial time.
Related papers
- The Communication Complexity of Approximating Matrix Rank [50.6867896228563]
We show that this problem has randomized communication complexity $Omega(frac1kcdot n2log|mathbbF|)$.
As an application, we obtain an $Omega(frac1kcdot n2log|mathbbF|)$ space lower bound for any streaming algorithm with $k$ passes.
arXiv Detail & Related papers (2024-10-26T06:21:42Z) - Partially Unitary Learning [0.0]
An optimal mapping between Hilbert spaces $IN$ of $left|psirightrangle$ and $OUT$ of $left|phirightrangle$ is presented.
An iterative algorithm for finding the global maximum of this optimization problem is developed.
arXiv Detail & Related papers (2024-05-16T17:13:55Z) - Quantum and classical query complexities of functions of matrices [0.0]
We show that for any continuous function $f(x):[-1,1]rightarrow [-1,1]$, the quantum query complexity of computing $brai f(A) ketjpm varepsilon/4$ is lower bounded by $Omega(widetildedeg_varepsilon(f))$.
arXiv Detail & Related papers (2023-11-13T00:45:41Z) - Fast $(1+\varepsilon)$-Approximation Algorithms for Binary Matrix
Factorization [54.29685789885059]
We introduce efficient $(1+varepsilon)$-approximation algorithms for the binary matrix factorization (BMF) problem.
The goal is to approximate $mathbfA$ as a product of low-rank factors.
Our techniques generalize to other common variants of the BMF problem.
arXiv Detail & Related papers (2023-06-02T18:55:27Z) - The Approximate Degree of DNF and CNF Formulas [95.94432031144716]
For every $delta>0,$ we construct CNF and formulas of size with approximate degree $Omega(n1-delta),$ essentially matching the trivial upper bound of $n.
We show that for every $delta>0$, these models require $Omega(n1-delta)$, $Omega(n/4kk2)1-delta$, and $Omega(n/4kk2)1-delta$, respectively.
arXiv Detail & Related papers (2022-09-04T10:01:39Z) - An Optimal Separation of Randomized and Quantum Query Complexity [67.19751155411075]
We prove that for every decision tree, the absolute values of the Fourier coefficients of a given order $ellsqrtbinomdell (1+log n)ell-1,$ sum to at most $cellsqrtbinomdell (1+log n)ell-1,$ where $n$ is the number of variables, $d$ is the tree depth, and $c>0$ is an absolute constant.
arXiv Detail & Related papers (2020-08-24T06:50:57Z) - Fast digital methods for adiabatic state preparation [0.0]
We present a quantum algorithm for adiabatic state preparation on a gate-based quantum computer, with complexity polylogarithmic in the inverse error.
arXiv Detail & Related papers (2020-04-08T18:00:01Z) - Tight Quantum Lower Bound for Approximate Counting with Quantum States [49.6558487240078]
We prove tight lower bounds for the following variant of the counting problem considered by Aaronson, Kothari, Kretschmer, and Thaler ( 2020)
The task is to distinguish whether an input set $xsubseteq [n]$ has size either $k$ or $k'=(1+varepsilon)k$.
arXiv Detail & Related papers (2020-02-17T10:53:50Z) - Quantum algorithms for the Goldreich-Levin learning problem [3.8849433921565284]
Goldreich-Levin algorithm was originally proposed for a cryptographic purpose and then applied to learning.
It takes a $poly(n,frac1epsilonlogfrac1delta)$ time to output the vectors $w$ with Walsh coefficients $S(w)geqepsilon$ with probability at least $1-delta$.
In this paper, a quantum algorithm for this problem is given with query complexity $O(fraclogfrac1deltaepsilon4)$, which is independent of $n$.
arXiv Detail & Related papers (2019-12-31T14:52:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.