論文の概要: Robust Activity Recognition for Adaptive Worker-Robot Interaction using
Transfer Learning
- arxiv url: http://arxiv.org/abs/2308.14843v1
- Date: Mon, 28 Aug 2023 19:03:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-30 16:58:54.801618
- Title: Robust Activity Recognition for Adaptive Worker-Robot Interaction using
Transfer Learning
- Title(参考訳): 伝達学習を用いた適応型作業ロボットインタラクションのためのロバストなアクティビティ認識
- Authors: Farid Shahnavaz, Riley Tavassoli, and Reza Akhavian
- Abstract要約: 本稿では,建設労働者の行動認識のための伝達学習手法を提案する。
開発したアルゴリズムは、オリジナルの著者によって事前訓練されたモデルから特徴を伝達し、それらを下流のアクティビティ認識タスクのために微調整する。
その結果, 微調整モデルでは, 異なるMMHタスクを頑健かつ適応的に認識できることが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Human activity recognition (HAR) using machine learning has shown tremendous
promise in detecting construction workers' activities. HAR has many
applications in human-robot interaction research to enable robots'
understanding of human counterparts' activities. However, many existing HAR
approaches lack robustness, generalizability, and adaptability. This paper
proposes a transfer learning methodology for activity recognition of
construction workers that requires orders of magnitude less data and compute
time for comparable or better classification accuracy. The developed algorithm
transfers features from a model pre-trained by the original authors and
fine-tunes them for the downstream task of activity recognition in
construction. The model was pre-trained on Kinetics-400, a large-scale
video-based human activity recognition dataset with 400 distinct classes. The
model was fine-tuned and tested using videos captured from manual material
handling (MMH) activities found on YouTube. Results indicate that the
fine-tuned model can recognize distinct MMH tasks in a robust and adaptive
manner which is crucial for the widespread deployment of collaborative robots
in construction.
- Abstract(参考訳): 機械学習を用いたヒューマンアクティビティ認識(HAR)は,建設労働者の活動を検出する上で非常に有望である。
HARは、ロボットが人間の活動を理解するために人間とロボットの相互作用の研究に多くの応用がある。
しかし、既存のHARアプローチの多くは堅牢性、一般化可能性、適応性に欠ける。
本稿では,作業員の行動認識のための伝達学習手法を提案する。
開発したアルゴリズムは、原作者が事前訓練したモデルから特徴を伝達し、構築における活動認識の下流タスクに微調整する。
このモデルは400の異なるクラスを持つ大規模ビデオベースヒューマンアクティビティ認識データセットであるKinetics-400で事前訓練された。
モデルは微調整され、youtubeで見つかった手動の素材ハンドリング(mmh)アクティビティから撮影したビデオを使ってテストされた。
提案手法は, 協調作業ロボットの大規模配置に不可欠であるロバストかつ適応的なMMHタスクを, 微調整モデルで認識できることを示唆する。
関連論文リスト
- Active Exploration in Bayesian Model-based Reinforcement Learning for Robot Manipulation [8.940998315746684]
ロボットアームのエンドタスクに対するモデルベース強化学習(RL)アプローチを提案する。
我々はベイズニューラルネットワークモデルを用いて、探索中に動的モデルに符号化された信念と情報の両方を確率論的に表現する。
実験により,ベイズモデルに基づくRL手法の利点が示された。
論文 参考訳(メタデータ) (2024-04-02T11:44:37Z) - Real-time Addressee Estimation: Deployment of a Deep-Learning Model on
the iCub Robot [52.277579221741746]
住所推定は、社会ロボットが人間とスムーズに対話するために必要なスキルである。
人間の知覚スキルにインスパイアされたディープラーニングモデルは、iCubロボットに設計、訓練、デプロイされる。
本研究では,人間-ロボットのリアルタイムインタラクションにおいて,そのような実装の手順とモデルの性能について述べる。
論文 参考訳(メタデータ) (2023-11-09T13:01:21Z) - Robot Fine-Tuning Made Easy: Pre-Training Rewards and Policies for
Autonomous Real-World Reinforcement Learning [58.3994826169858]
ロボット強化学習のためのリセット不要な微調整システムであるRoboFuMEを紹介する。
我々の洞察は、オフラインの強化学習技術を利用して、事前訓練されたポリシーの効率的なオンライン微調整を確保することである。
提案手法では,既存のロボットデータセットからのデータを組み込んで,目標タスクを3時間以内の自律現実体験で改善することができる。
論文 参考訳(メタデータ) (2023-10-23T17:50:08Z) - Efficient Adaptive Human-Object Interaction Detection with
Concept-guided Memory [64.11870454160614]
概念誘導メモリ(ADA-CM)を用いた適応型HOI検出器を提案する。
ADA-CMには2つの操作モードがある。最初のモードでは、トレーニング不要のパラダイムで新しいパラメータを学習することなくチューニングできる。
提案手法は, HICO-DET と V-COCO のデータセットに対して, より少ないトレーニング時間で, 最新技術による競合的な結果を得る。
論文 参考訳(メタデータ) (2023-09-07T13:10:06Z) - MILD: Multimodal Interactive Latent Dynamics for Learning Human-Robot
Interaction [34.978017200500005]
我々は,HRI(Human-Robot Interactions)の問題に対処するために,MILD(Multimodal Interactive Latent Dynamics)を提案する。
変分オートエンコーダ(VAE)の潜時空間における相互作用エージェントの結合分布をモデル化するために,Hidden Semi-Markov Models (HSMMs) を用いて実演から相互作用ダイナミクスを学習する。
MILDは、観察されたエージェント(人間の)軌道に条件付けされたときに、制御されたエージェント(ロボット)に対してより正確な軌道を生成する。
論文 参考訳(メタデータ) (2022-10-22T11:25:11Z) - CHARM: A Hierarchical Deep Learning Model for Classification of Complex
Human Activities Using Motion Sensors [0.9594432031144714]
CHARMは、モーションセンサーを用いた複雑な人間の活動の分類のための階層的なディープラーニングモデルである。
これは、平均精度とF1スコアの点で、最先端のアクティビティ認識のための最先端の教師付き学習アプローチよりも優れています。
ハイレベルなアクティビティラベルのみを使用してトレーニングされた場合、低レベルなユーザアクティビティを学習する能力は、HARタスクの半教師付き学習の道を開く可能性がある。
論文 参考訳(メタデータ) (2022-07-16T01:36:54Z) - Model Predictive Control for Fluid Human-to-Robot Handovers [50.72520769938633]
人間の快適さを考慮に入れた計画運動は、人間ロボットのハンドオーバプロセスの一部ではない。
本稿では,効率的なモデル予測制御フレームワークを用いてスムーズな動きを生成することを提案する。
ユーザ数名の多様なオブジェクトに対して,人間とロボットのハンドオーバ実験を行う。
論文 参考訳(メタデータ) (2022-03-31T23:08:20Z) - Domain Adaptive Robotic Gesture Recognition with Unsupervised
Kinematic-Visual Data Alignment [60.31418655784291]
本稿では,マルチモダリティ知識,すなわちキネマティックデータとビジュアルデータを同時にシミュレータから実ロボットに伝達できる,教師なしドメイン適応フレームワークを提案する。
ビデオの時間的手がかりと、ジェスチャー認識に対するマルチモーダル固有の相関を用いて、トランスファー可能な機能を強化したドメインギャップを修復する。
その結果, 本手法は, ACCでは最大12.91%, F1scoreでは20.16%と, 実際のロボットではアノテーションを使わずに性能を回復する。
論文 参考訳(メタデータ) (2021-03-06T09:10:03Z) - Human Activity Recognition Using Multichannel Convolutional Neural
Network [0.0]
人間の活動認識(HAR)は、単に人間の行動を知覚する機械の能力を指します。
本論文では,実用的行動から収集したデータに基づいて,人間の行動を区別できる教師付き学習法について述べる。
このモデルはUCI HARデータセットでテストされ、95.25%の分類精度が得られた。
論文 参考訳(メタデータ) (2021-01-17T16:48:17Z) - Federated Learning with Heterogeneous Labels and Models for Mobile
Activity Monitoring [0.7106986689736827]
デバイス上でのフェデレーション学習は、分散的で協調的な機械学習に効果的なアプローチであることが証明されている。
本稿では,複数の活動にまたがる重なり合う情報ゲインを利用したラベルに基づくアグリゲーションのためのフレームワークを提案する。
Raspberry Pi 2上のHeterogeneity Human Activity Recognition (HHAR)データセットによる経験的評価は、決定論的精度が少なくとも11.01%向上したことを示している。
論文 参考訳(メタデータ) (2020-12-04T11:44:17Z) - Learning Predictive Models From Observation and Interaction [137.77887825854768]
世界との相互作用から予測モデルを学ぶことで、ロボットのようなエージェントが世界がどのように働くかを学ぶことができる。
しかし、複雑なスキルのダイナミクスを捉えるモデルを学ぶことは大きな課題である。
本研究では,人間などの他のエージェントの観察データを用いて,トレーニングセットを増強する手法を提案する。
論文 参考訳(メタデータ) (2019-12-30T01:10:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。