論文の概要: Neural approaches to spoken content embedding
- arxiv url: http://arxiv.org/abs/2308.14905v1
- Date: Mon, 28 Aug 2023 21:16:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-30 16:39:12.083947
- Title: Neural approaches to spoken content embedding
- Title(参考訳): 音声コンテンツ埋め込みへのニューラルアプローチ
- Authors: Shane Settle
- Abstract要約: 我々は、リカレントニューラルネットワーク(RNN)に基づく新しい識別的音響単語埋め込み(AWE)と音響的接地単語埋め込み(AGWE)アプローチに貢献する。
我々は,単言語と多言語の両方の埋め込みモデルを,クエリ・バイ・サンプル音声検索と自動音声認識の下流タスクに適用する。
- 参考スコア(独自算出の注目度): 1.3706331473063877
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Comparing spoken segments is a central operation to speech processing.
Traditional approaches in this area have favored frame-level dynamic
programming algorithms, such as dynamic time warping, because they require no
supervision, but they are limited in performance and efficiency. As an
alternative, acoustic word embeddings -- fixed-dimensional vector
representations of variable-length spoken word segments -- have begun to be
considered for such tasks as well. However, the current space of such
discriminative embedding models, training approaches, and their application to
real-world downstream tasks is limited. We start by considering ``single-view"
training losses where the goal is to learn an acoustic word embedding model
that separates same-word and different-word spoken segment pairs. Then, we
consider ``multi-view" contrastive losses. In this setting, acoustic word
embeddings are learned jointly with embeddings of character sequences to
generate acoustically grounded embeddings of written words, or acoustically
grounded word embeddings.
In this thesis, we contribute new discriminative acoustic word embedding
(AWE) and acoustically grounded word embedding (AGWE) approaches based on
recurrent neural networks (RNNs). We improve model training in terms of both
efficiency and performance. We take these developments beyond English to
several low-resource languages and show that multilingual training improves
performance when labeled data is limited. We apply our embedding models, both
monolingual and multilingual, to the downstream tasks of query-by-example
speech search and automatic speech recognition. Finally, we show how our
embedding approaches compare with and complement more recent self-supervised
speech models.
- Abstract(参考訳): 音声セグメントの比較は、音声処理の中心的な操作である。
この領域における伝統的なアプローチは、動的時間ワーピングのようなフレームレベルの動的プログラミングアルゴリズムを好んでいるが、それらは監視を必要としないが、性能と効率に制限がある。
代案として、可変長音声単語セグメントの定次元ベクトル表現である音響単語の埋め込みも、そのような作業のために検討され始めている。
しかし、このような差別的な埋め込みモデル、トレーニングアプローチ、および現実世界の下流タスクへの応用の現在の空間は限られている。
まず,同じ単語と異なる単語のセグメントペアを分離した音響単語の埋め込みモデルを学ぶことを目標とする「単一視点」の学習損失について検討する。
この設定では、文字列の埋め込みと共に音響単語の埋め込みを学習して、書き言葉の音響的接地埋め込み、あるいは音響的接地単語の埋め込みを生成する。
本稿では,ニューラルネット(RNN)に基づく新しい識別的音響単語埋め込み(AWE)と音響的接地単語埋め込み(AGWE)アプローチを提案する。
効率とパフォーマンスの両面で、モデルトレーニングを改善します。
我々は、これらの開発を英語以外の低リソース言語にも適用し、ラベル付きデータに制限がある場合、多言語学習がパフォーマンスを向上させることを示す。
我々は,クエリバイサンプル音声検索と自動音声認識の下流タスクに,単言語と多言語の両方の組込みモデルを適用する。
最後に,近年の自己教師型音声モデルと比較し,補完する方法について述べる。
関連論文リスト
- Integrating Self-supervised Speech Model with Pseudo Word-level Targets
from Visually-grounded Speech Model [57.78191634042409]
擬似単語レベルのターゲットを学習プロセスに統合するフレームワークであるPseudo-Word HuBERT(PW-HuBERT)を提案する。
4つの音声言語理解(SLU)ベンチマークによる実験結果から,意味情報の収集におけるモデルの有用性が示唆された。
論文 参考訳(メタデータ) (2024-02-08T16:55:21Z) - SPADE: Self-supervised Pretraining for Acoustic DisEntanglement [2.294014185517203]
室内音響を音声から切り離す自己教師型手法を提案する。
提案手法は,ラベル付きトレーニングデータが少ない場合に,ベースライン上での性能を著しく向上することを示す。
論文 参考訳(メタデータ) (2023-02-03T01:36:38Z) - Integrating Form and Meaning: A Multi-Task Learning Model for Acoustic
Word Embeddings [19.195728241989702]
本稿では,トップダウン語彙知識を音響単語埋め込みの訓練手順に組み込んだマルチタスク学習モデルを提案する。
我々は3つの言語で実験を行い、語彙知識を取り入れることで、埋め込み空間の識別性が向上することを示した。
論文 参考訳(メタデータ) (2022-09-14T13:33:04Z) - Self-Supervised Speech Representation Learning: A Review [105.1545308184483]
自己教師付き表現学習法は、幅広いタスクやドメインに利益をもたらす単一の普遍的モデルを約束する。
音声表現学習は、生成的、コントラスト的、予測的という3つの主要なカテゴリで同様の進歩を経験している。
本稿では,自己指導型音声表現学習のアプローチと,他の研究領域との関係について述べる。
論文 参考訳(メタデータ) (2022-05-21T16:52:57Z) - Towards Language Modelling in the Speech Domain Using Sub-word
Linguistic Units [56.52704348773307]
音節や音素を含む言語単位に基づくLSTMに基づく新しい生成音声LMを提案する。
限られたデータセットでは、現代の生成モデルで要求されるものよりも桁違いに小さいので、我々のモデルはバブリング音声を近似する。
補助的なテキストLM,マルチタスク学習目標,補助的な調音特徴を用いた訓練の効果を示す。
論文 参考訳(メタデータ) (2021-10-31T22:48:30Z) - Wav-BERT: Cooperative Acoustic and Linguistic Representation Learning
for Low-Resource Speech Recognition [159.9312272042253]
Wav-BERTは、協調的な音響および言語表現学習法である。
我々は、事前訓練された音響モデル(wav2vec 2.0)と言語モデル(BERT)をエンドツーエンドのトレーニング可能なフレームワークに統合する。
論文 参考訳(メタデータ) (2021-09-19T16:39:22Z) - Preliminary study on using vector quantization latent spaces for TTS/VC
systems with consistent performance [55.10864476206503]
本稿では,潜在言語埋め込みをモデル化するための量子化ベクトルの利用について検討する。
トレーニングにおいて、潜伏空間上の異なるポリシーを強制することにより、潜伏言語埋め込みを得ることができる。
実験の結果,ベクトル量子化法で構築した音声クローニングシステムは,知覚的評価の点でわずかに劣化していることがわかった。
論文 参考訳(メタデータ) (2021-06-25T07:51:35Z) - SLM: Learning a Discourse Language Representation with Sentence
Unshuffling [53.42814722621715]
談話言語表現を学習するための新しい事前学習目的である文レベル言語モデリングを導入する。
本モデルでは,この特徴により,従来のBERTの性能が大幅に向上することを示す。
論文 参考訳(メタデータ) (2020-10-30T13:33:41Z) - Multilingual Jointly Trained Acoustic and Written Word Embeddings [22.63696520064212]
このアイデアを複数の低リソース言語に拡張します。
我々は、複数の言語から音声で書き起こされたデータを用いて、AWEモデルとAGWEモデルを共同で訓練する。
事前トレーニングされたモデルは、目に見えないゼロリソース言語や、低リソース言語のデータを微調整するために使用することができる。
論文 参考訳(メタデータ) (2020-06-24T19:16:02Z) - Catplayinginthesnow: Impact of Prior Segmentation on a Model of Visually
Grounded Speech [24.187382590960254]
子どもたちは、音声入力を音素に分割し、そこから単語を組み立てることで、語彙を作らない。
これは、言語を学ぶ理想的な方法は、完全なセマンティックユニットから始めることである。
本稿では、RNNモデルにそのような情報を導入し、どのタイプの境界が最も効率的かを調べるための簡単な方法を提案する。
論文 参考訳(メタデータ) (2020-06-15T13:20:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。