SimSched: A tool for Simulating Autosar Implementaion in Simulink
- URL: http://arxiv.org/abs/2308.14974v1
- Date: Tue, 29 Aug 2023 02:02:14 GMT
- Title: SimSched: A tool for Simulating Autosar Implementaion in Simulink
- Authors: Jian Chen, Manar H. Alalfi, Thomas R. Dean, Ramesh S
- Abstract summary: We present a Simulink block that can schedule tasks with non-zero simulation times.
This paper extends the Simulink environment to model the timing properties of tasks.
- Score: 5.1533459319215975
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: AUTOSAR (AUTomotive Open System ARchitecture) is an open industry standard
for the automotive sector. It defines the three-layered automotive software
architecture. One of these layers is the application layer, where functional
behaviors are encapsulated in Software Components (SW-Cs). Inside SW-Cs, a set
of runnable entities represents the internal behavior and is realized as a set
of tasks. To address AUTOSAR's lack of support for modeling behaviors of
runnables, languages such as Simulink are employed. Simulink simulations assume
Simulink block behaviors are completed in zero execution time, while real
execution requires a finite execution time. This timing mismatch can result in
failures to detect unexpected runtime behaviors during the simulation phase.
This paper extends the Simulink environment to model the timing properties of
tasks. We present a Simulink block that can schedule tasks with non-zero
simulation times. It enables a more realistic analysis during model
development.
Related papers
- Simulation Streams: A Programming Paradigm for Controlling Large Language Models and Building Complex Systems with Generative AI [3.3126968968429407]
Simulation Streams is a programming paradigm designed to efficiently control and leverage Large Language Models (LLMs)
Our primary goal is to create a framework that harnesses the agentic abilities of LLMs while addressing their limitations in maintaining consistency.
arXiv Detail & Related papers (2025-01-30T16:38:03Z) - Bench2Drive-R: Turning Real World Data into Reactive Closed-Loop Autonomous Driving Benchmark by Generative Model [63.336123527432136]
We introduce Bench2Drive-R, a generative framework that enables reactive closed-loop evaluation.
Unlike existing video generative models for autonomous driving, the proposed designs are tailored for interactive simulation.
We compare the generation quality of Bench2Drive-R with existing generative models and achieve state-of-the-art performance.
arXiv Detail & Related papers (2024-12-11T06:35:18Z) - FactorSim: Generative Simulation via Factorized Representation [14.849320460718591]
We introduce FACTORSIM that generates full simulations in code from language input that can be used to train agents.
For evaluation, we introduce a generative simulation benchmark that assesses the generated simulation code's accuracy and effectiveness in facilitating zero-shot transfers in reinforcement learning settings.
We show that FACTORSIM outperforms existing methods in generating simulations regarding prompt alignment (e.g., accuracy), zero-shot transfer abilities, and human evaluation.
arXiv Detail & Related papers (2024-09-26T09:00:30Z) - BeSimulator: A Large Language Model Powered Text-based Behavior Simulator [28.112491177744783]
We introduce BeSimulator as an attempt towards behavior simulation in the context of text-based environments.
BeSimulator can generalize across scenarios and achieve long-horizon complex simulation.
arXiv Detail & Related papers (2024-09-24T08:37:04Z) - Promptable Closed-loop Traffic Simulation [57.36568236100507]
ProSim is a multimodal promptable closed-loop traffic simulation framework.
ProSim rolls out a traffic scenario in a closed-loop manner, modeling each agent's interaction with other traffic participants.
To support research on promptable traffic simulation, we create ProSim-Instruct-520k, a multimodal prompt-scenario paired driving dataset.
arXiv Detail & Related papers (2024-09-09T17:59:15Z) - NAVSIM: Data-Driven Non-Reactive Autonomous Vehicle Simulation and Benchmarking [65.24988062003096]
We present NAVSIM, a framework for benchmarking vision-based driving policies.
Our simulation is non-reactive, i.e., the evaluated policy and environment do not influence each other.
NAVSIM enabled a new competition held at CVPR 2024, where 143 teams submitted 463 entries, resulting in several new insights.
arXiv Detail & Related papers (2024-06-21T17:59:02Z) - DrEureka: Language Model Guided Sim-To-Real Transfer [64.14314476811806]
Transferring policies learned in simulation to the real world is a promising strategy for acquiring robot skills at scale.
In this paper, we investigate using Large Language Models (LLMs) to automate and accelerate sim-to-real design.
Our approach is capable of solving novel robot tasks, such as quadruped balancing and walking atop a yoga ball.
arXiv Detail & Related papers (2024-06-04T04:53:05Z) - Design-Space Exploration of SNN Models using Application-Specific Multi-Core Architectures [0.3599866690398789]
"RAVSim" is a cutting-edge SNN simulator, developed using and it is publicly available on their website as an official module.
RAVSim is a runtime virtual simulation environment that enables the user to interact with the model, observe its behavior of output concentration, and modify the set of parametric values at any time while the simulation is in execution.
arXiv Detail & Related papers (2024-02-07T20:41:00Z) - Waymax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous
Driving Research [76.93956925360638]
Waymax is a new data-driven simulator for autonomous driving in multi-agent scenes.
It runs entirely on hardware accelerators such as TPUs/GPUs and supports in-graph simulation for training.
We benchmark a suite of popular imitation and reinforcement learning algorithms with ablation studies on different design decisions.
arXiv Detail & Related papers (2023-10-12T20:49:15Z) - SimCS: Simulation for Domain Incremental Online Continual Segmentation [60.18777113752866]
Existing continual learning approaches mostly focus on image classification in the class-incremental setup.
We propose SimCS, a parameter-free method complementary to existing ones that uses simulated data to regularize continual learning.
arXiv Detail & Related papers (2022-11-29T14:17:33Z) - SimNet: Computer Architecture Simulation using Machine Learning [3.7019798164954336]
This work describes a concerted effort, where machine learning (ML) is used to accelerate discrete-event simulation.
A GPU-accelerated parallel simulator is implemented based on the proposed instruction latency predictor.
Its simulation accuracy and throughput are validated and evaluated against a state-of-the-art simulator.
arXiv Detail & Related papers (2021-05-12T17:31:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.