NAVSIM: Data-Driven Non-Reactive Autonomous Vehicle Simulation and Benchmarking
- URL: http://arxiv.org/abs/2406.15349v2
- Date: Thu, 31 Oct 2024 17:58:34 GMT
- Title: NAVSIM: Data-Driven Non-Reactive Autonomous Vehicle Simulation and Benchmarking
- Authors: Daniel Dauner, Marcel Hallgarten, Tianyu Li, Xinshuo Weng, Zhiyu Huang, Zetong Yang, Hongyang Li, Igor Gilitschenski, Boris Ivanovic, Marco Pavone, Andreas Geiger, Kashyap Chitta,
- Abstract summary: We present NAVSIM, a framework for benchmarking vision-based driving policies.
Our simulation is non-reactive, i.e., the evaluated policy and environment do not influence each other.
NAVSIM enabled a new competition held at CVPR 2024, where 143 teams submitted 463 entries, resulting in several new insights.
- Score: 65.24988062003096
- License:
- Abstract: Benchmarking vision-based driving policies is challenging. On one hand, open-loop evaluation with real data is easy, but these results do not reflect closed-loop performance. On the other, closed-loop evaluation is possible in simulation, but is hard to scale due to its significant computational demands. Further, the simulators available today exhibit a large domain gap to real data. This has resulted in an inability to draw clear conclusions from the rapidly growing body of research on end-to-end autonomous driving. In this paper, we present NAVSIM, a middle ground between these evaluation paradigms, where we use large datasets in combination with a non-reactive simulator to enable large-scale real-world benchmarking. Specifically, we gather simulation-based metrics, such as progress and time to collision, by unrolling bird's eye view abstractions of the test scenes for a short simulation horizon. Our simulation is non-reactive, i.e., the evaluated policy and environment do not influence each other. As we demonstrate empirically, this decoupling allows open-loop metric computation while being better aligned with closed-loop evaluations than traditional displacement errors. NAVSIM enabled a new competition held at CVPR 2024, where 143 teams submitted 463 entries, resulting in several new insights. On a large set of challenging scenarios, we observe that simple methods with moderate compute requirements such as TransFuser can match recent large-scale end-to-end driving architectures such as UniAD. Our modular framework can potentially be extended with new datasets, data curation strategies, and metrics, and will be continually maintained to host future challenges. Our code is available at https://github.com/autonomousvision/navsim.
Related papers
- Compositional simulation-based inference for time series [21.9975782468709]
simulators frequently emulate real-world dynamics through thousands of single-state transitions over time.
We propose an SBI framework that can exploit such Markovian simulators by locally identifying parameters consistent with individual state transitions.
We then compose these local results to obtain a posterior over parameters that align with the entire time series observation.
arXiv Detail & Related papers (2024-11-05T01:55:07Z) - Bench4Merge: A Comprehensive Benchmark for Merging in Realistic Dense Traffic with Micro-Interactive Vehicles [20.832829903505296]
We develop a benchmark for assessing motion planning capabilities in merging scenarios.
Our approach involves other vehicles trained in large scale datasets with micro-behavioral characteristics.
Extensive experiments have demonstrated the advanced nature of this evaluation benchmark.
arXiv Detail & Related papers (2024-10-21T11:35:33Z) - Autonomous Vehicle Controllers From End-to-End Differentiable Simulation [60.05963742334746]
We propose a differentiable simulator and design an analytic policy gradients (APG) approach to training AV controllers.
Our proposed framework brings the differentiable simulator into an end-to-end training loop, where gradients of environment dynamics serve as a useful prior to help the agent learn a more grounded policy.
We find significant improvements in performance and robustness to noise in the dynamics, as well as overall more intuitive human-like handling.
arXiv Detail & Related papers (2024-09-12T11:50:06Z) - XLD: A Cross-Lane Dataset for Benchmarking Novel Driving View Synthesis [84.23233209017192]
This paper presents a novel driving view synthesis dataset and benchmark specifically designed for autonomous driving simulations.
The dataset is unique as it includes testing images captured by deviating from the training trajectory by 1-4 meters.
We establish the first realistic benchmark for evaluating existing NVS approaches under front-only and multi-camera settings.
arXiv Detail & Related papers (2024-06-26T14:00:21Z) - Querying Labeled Time Series Data with Scenario Programs [0.0]
We propose a formal definition of what constitutes a match between a real-world labeled time series data item and a simulated scenario.
We present a definition and algorithm for matching scalable beyond the autonomous vehicles domain.
arXiv Detail & Related papers (2024-06-25T15:15:27Z) - Is Ego Status All You Need for Open-Loop End-to-End Autonomous Driving? [84.17711168595311]
End-to-end autonomous driving has emerged as a promising research direction to target autonomy from a full-stack perspective.
nuScenes dataset, characterized by relatively simple driving scenarios, leads to an under-utilization of perception information in end-to-end models.
We introduce a new metric to evaluate whether the predicted trajectories adhere to the road.
arXiv Detail & Related papers (2023-12-05T11:32:31Z) - UniSim: A Neural Closed-Loop Sensor Simulator [76.79818601389992]
We present UniSim, a neural sensor simulator that takes a single recorded log captured by a sensor-equipped vehicle.
UniSim builds neural feature grids to reconstruct both the static background and dynamic actors in the scene.
We incorporate learnable priors for dynamic objects, and leverage a convolutional network to complete unseen regions.
arXiv Detail & Related papers (2023-08-03T17:56:06Z) - Towards Optimal Strategies for Training Self-Driving Perception Models
in Simulation [98.51313127382937]
We focus on the use of labels in the synthetic domain alone.
Our approach introduces both a way to learn neural-invariant representations and a theoretically inspired view on how to sample the data from the simulator.
We showcase our approach on the bird's-eye-view vehicle segmentation task with multi-sensor data.
arXiv Detail & Related papers (2021-11-15T18:37:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.