論文の概要: Mixup-Augmented Meta-Learning for Sample-Efficient Fine-Tuning of
Protein Simulators
- arxiv url: http://arxiv.org/abs/2308.15116v3
- Date: Tue, 10 Oct 2023 03:41:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-13 04:22:01.196823
- Title: Mixup-Augmented Meta-Learning for Sample-Efficient Fine-Tuning of
Protein Simulators
- Title(参考訳): 複合型メタラーニングによるタンパク質シミュレータの精密調整
- Authors: Jingbang Chen, Yian Wang, Xingwei Qu, Shuangjia Zheng, Yaodong Yang,
Hao Dong, Jie Fu
- Abstract要約: 分子動力学タスクにソフトプロンプトに基づく学習手法を適用する。
本フレームワークは,ドメイン内データの精度を向上し,未知および分布外サンプルの強力な一般化能力を示す。
- 参考スコア(独自算出の注目度): 29.22292758901411
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Molecular dynamics simulations have emerged as a fundamental instrument for
studying biomolecules. At the same time, it is desirable to perform simulations
of a collection of particles under various conditions in which the molecules
can fluctuate. In this paper, we explore and adapt the soft prompt-based
learning method to molecular dynamics tasks. Our model can remarkably
generalize to unseen and out-of-distribution scenarios with limited training
data. While our work focuses on temperature as a test case, the versatility of
our approach allows for efficient simulation through any continuous dynamic
conditions, such as pressure and volumes. Our framework has two stages: 1)
Pre-trains with data mixing technique, augments molecular structure data and
temperature prompts, then applies a curriculum learning method by increasing
the ratio of them smoothly. 2) Meta-learning-based fine-tuning framework
improves sample-efficiency of fine-tuning process and gives the soft
prompt-tuning better initialization points. Comprehensive experiments reveal
that our framework excels in accuracy for in-domain data and demonstrates
strong generalization capabilities for unseen and out-of-distribution samples.
- Abstract(参考訳): 分子動力学シミュレーションは生体分子の研究の基本的な道具として登場した。
同時に、分子が変動可能な様々な条件下で粒子の集合のシミュレーションを行うことが望ましい。
本稿では,分子動力学の課題に対してソフトプロンプトに基づく学習法を探索し,適応する。
私たちのモデルは、限られたトレーニングデータを使用して、未発見の分散シナリオに著しく一般化することができます。
我々の研究は、テストケースとしての温度に焦点を当てているが、我々のアプローチの汎用性は、圧力や体積などの連続的な動的条件を通した効率的なシミュレーションを可能にする。
枠組みには2つの段階があります
1)データミキシング技術による事前学習を行い,分子構造データと温度プロンプトを増強し,その比率をスムーズに増やしカリキュラム学習法を適用する。
2) メタラーニングに基づくファインチューニングフレームワークは, ファインチューニングプロセスのサンプル効率を向上し, ソフト・プロンプトチューニングを向上する。
包括的実験により,本フレームワークはドメイン内データの精度を向上し,未知および分布外サンプルの強力な一般化能力を示した。
関連論文リスト
- Generative Modeling of Molecular Dynamics Trajectories [12.255021091552441]
データからMDの柔軟なマルチタスクサロゲートモデルを学ぶためのパラダイムとして,分子軌道の生成モデルを提案する。
このような生成モデルは,前方シミュレーションや遷移経路サンプリング,軌道上アップサンプリングといった多様なタスクに適応可能であることを示す。
論文 参考訳(メタデータ) (2024-09-26T13:02:28Z) - Fusing Neural and Physical: Augment Protein Conformation Sampling with
Tractable Simulations [27.984190594059868]
生成モデルは サロゲートサンプルとして利用され コンフォメーションアンサンブルを 桁違いに速く得る
本研究では,MDシミュレーションを抽出可能な方法で組み込んだ,事前学習型ジェネレーティブ・サンプリング器の少数ショット設定について検討する。
論文 参考訳(メタデータ) (2024-02-16T03:48:55Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
薬物発見において、分子動力学(MD)シミュレーションは、結合親和性を予測し、輸送特性を推定し、ポケットサイトを探索する強力なツールを提供する。
我々は,数値MDを容易にし,タンパク質-リガンド結合ダイナミクスの正確なシミュレーションを提供する,最初の機械学習サロゲートであるNeuralMDを提案する。
従来の数値MDシミュレーションと比較して1K$times$ Speedupを実現することにより,NeuralMDの有効性と有効性を示す。
論文 参考訳(メタデータ) (2024-01-26T09:35:17Z) - Top-down machine learning of coarse-grained protein force-fields [2.1485350418225244]
我々の手法は、タンパク質を分子動力学でシミュレートし、その結果の軌道を利用してニューラルネットワーク電位を訓練することである。
注目すべきは、この方法はタンパク質のネイティブなコンフォメーションのみを必要とし、ラベル付きデータを必要としないことである。
マルコフ状態モデルを適用することで、シミュレーションされたタンパク質のネイティブな構造を粗い粒度のシミュレーションから予測することができる。
論文 参考訳(メタデータ) (2023-06-20T08:31:24Z) - Str2Str: A Score-based Framework for Zero-shot Protein Conformation
Sampling [23.74897713386661]
タンパク質の動的性質は、その生物学的機能や性質を決定するために重要である。
既存の学習ベースのアプローチでは、直接サンプリングを行うが、トレーニングにはターゲット固有のシミュレーションデータに大きく依存する。
ゼロショットコンフォーメーションサンプリングが可能な新しい構造間翻訳フレームワークStr2Strを提案する。
論文 参考訳(メタデータ) (2023-06-05T15:19:06Z) - Calibration and generalizability of probabilistic models on low-data
chemical datasets with DIONYSUS [0.0]
我々は、小さな化学データセット上での確率論的機械学習モデルの校正と一般化可能性について広範な研究を行う。
私たちは、さまざまなタスク(バイナリ、回帰)とデータセットにおける予測と不確実性の品質を分析します。
我々は、新しい化学実験において一般的なシナリオである、小さな化学データセットをモデル化するためのモデルと特徴の選択に関する実践的な洞察を提供する。
論文 参考訳(メタデータ) (2022-12-03T08:19:06Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
分子動力学(MD)シミュレーションは、化学的および生物学的プロセスに関する原子論的な洞察を可能にする。
近年,MDシミュレーションの代替手段として機械学習力場(MLFF)が出現している。
本研究は、大規模分子シミュレーションのための正確なMLFFを構築するための一般的なアプローチを提案する。
論文 参考訳(メタデータ) (2022-05-17T13:08:28Z) - Molecular Attributes Transfer from Non-Parallel Data [57.010952598634944]
分子最適化をスタイル伝達問題として定式化し、非並列データの2つのグループ間の内部差を自動的に学習できる新しい生成モデルを提案する。
毒性修飾と合成性向上という2つの分子最適化タスクの実験により,本モデルがいくつかの最先端手法を著しく上回ることを示した。
論文 参考訳(メタデータ) (2021-11-30T06:10:22Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process(INP)は、シミュレーションとアクティブな学習アプローチのためのディープラーニングフレームワークである。
能動的学習のために,NPベースモデルの潜時空間で計算された新しい取得関数Latent Information Gain (LIG)を提案する。
その結果,STNPは学習環境のベースラインを上回り,LIGは能動学習の最先端を達成していることがわかった。
論文 参考訳(メタデータ) (2021-06-05T01:31:51Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
分子グラフから分子コンフォメーション(つまり3d構造)を生成する方法を検討した。
分子グラフから有効かつ多様なコンフォーメーションを生成する新しい確率論的枠組みを提案する。
論文 参考訳(メタデータ) (2021-02-20T03:17:58Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。