論文の概要: Str2Str: A Score-based Framework for Zero-shot Protein Conformation
Sampling
- arxiv url: http://arxiv.org/abs/2306.03117v3
- Date: Mon, 11 Mar 2024 19:54:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-14 02:16:28.214921
- Title: Str2Str: A Score-based Framework for Zero-shot Protein Conformation
Sampling
- Title(参考訳): Str2Str:ゼロショットタンパク質コンフォーメーションサンプリングのためのスコアベースのフレームワーク
- Authors: Jiarui Lu, Bozitao Zhong, Zuobai Zhang, Jian Tang
- Abstract要約: タンパク質の動的性質は、その生物学的機能や性質を決定するために重要である。
既存の学習ベースのアプローチでは、直接サンプリングを行うが、トレーニングにはターゲット固有のシミュレーションデータに大きく依存する。
ゼロショットコンフォーメーションサンプリングが可能な新しい構造間翻訳フレームワークStr2Strを提案する。
- 参考スコア(独自算出の注目度): 23.74897713386661
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The dynamic nature of proteins is crucial for determining their biological
functions and properties, for which Monte Carlo (MC) and molecular dynamics
(MD) simulations stand as predominant tools to study such phenomena. By
utilizing empirically derived force fields, MC or MD simulations explore the
conformational space through numerically evolving the system via Markov chain
or Newtonian mechanics. However, the high-energy barrier of the force fields
can hamper the exploration of both methods by the rare event, resulting in
inadequately sampled ensemble without exhaustive running. Existing
learning-based approaches perform direct sampling yet heavily rely on
target-specific simulation data for training, which suffers from high data
acquisition cost and poor generalizability. Inspired by simulated annealing, we
propose Str2Str, a novel structure-to-structure translation framework capable
of zero-shot conformation sampling with roto-translation equivariant property.
Our method leverages an amortized denoising score matching objective trained on
general crystal structures and has no reliance on simulation data during both
training and inference. Experimental results across several benchmarking
protein systems demonstrate that Str2Str outperforms previous state-of-the-art
generative structure prediction models and can be orders of magnitude faster
compared to long MD simulations. Our open-source implementation is available at
https://github.com/lujiarui/Str2Str
- Abstract(参考訳): タンパク質の動的性質はそれらの生物学的機能や性質を決定するために不可欠であり、モンテカルロ (MC) と分子動力学 (MD) のシミュレーションはそのような現象を研究する主要なツールである。
経験的に導出された力場を利用することで、mcまたはmdシミュレーションはマルコフ連鎖あるいはニュートン力学を通じて系を数値的に発展させることで配座空間を探索する。
しかし、力場の高エネルギー障壁は、希少な出来事による両方の方法の探索を妨げることができ、結果として、徹底的な走行をせずに十分なサンプルアンサンブルが得られない。
既存の学習ベースのアプローチは直接サンプリングを行うが、高いデータ取得コストと一般性に苦しむトレーニングのターゲット固有のシミュレーションデータに大きく依存している。
シミュレーションアニーリングにインスパイアされたStr2Strは,ロト変換同変特性を持つゼロショットコンフォーメーションサンプリングが可能な新しい構造から構造への変換フレームワークである。
本手法は,一般的な結晶構造をトレーニング対象とし,トレーニングと推論の双方においてシミュレーションデータに依存しないアモータイズデノナイジングスコアマッチングを利用する。
いくつかのベンチマークタンパク質システムにおける実験結果は、str2strが以前の最先端生成構造予測モデルよりも優れており、長いmdシミュレーションよりも桁違いに速いことを示している。
私たちのオープンソース実装はhttps://github.com/lujiarui/str2strで利用可能です。
関連論文リスト
- Steering Masked Discrete Diffusion Models via Discrete Denoising Posterior Prediction [88.65168366064061]
本稿では,確率論的推論の課題として,事前学習したMDMを操る作業を行う新しいフレームワークであるDDPPを紹介する。
私たちのフレームワークは、3つの新しい目標のファミリーにつながります。
Wet-lab Validation(ウェット・ラブ・バリデーション)を用いて,報酬最適化タンパク質配列の過渡的発現を観察する。
論文 参考訳(メタデータ) (2024-10-10T17:18:30Z) - Investigating the Robustness of Counterfactual Learning to Rank Models: A Reproducibility Study [61.64685376882383]
ランク付け学習(CLTR: Counterfactual Learning to rank)は、IRコミュニティにおいて、ログ化された大量のユーザインタラクションデータを活用してランキングモデルをトレーニングする能力において、大きな注目を集めている。
本稿では,複雑かつ多様な状況における既存のCLTRモデルのロバスト性について検討する。
その結果, DLAモデルとIPS-DCMは, PS-PBMやPSSよりも, オフラインの確率推定による堅牢性が高いことがわかった。
論文 参考訳(メタデータ) (2024-04-04T10:54:38Z) - Fusing Neural and Physical: Augment Protein Conformation Sampling with
Tractable Simulations [27.984190594059868]
生成モデルは サロゲートサンプルとして利用され コンフォメーションアンサンブルを 桁違いに速く得る
本研究では,MDシミュレーションを抽出可能な方法で組み込んだ,事前学習型ジェネレーティブ・サンプリング器の少数ショット設定について検討する。
論文 参考訳(メタデータ) (2024-02-16T03:48:55Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
薬物発見において、分子動力学(MD)シミュレーションは、結合親和性を予測し、輸送特性を推定し、ポケットサイトを探索する強力なツールを提供する。
我々は,数値MDを容易にし,タンパク質-リガンド結合ダイナミクスの正確なシミュレーションを提供する,最初の機械学習サロゲートであるNeuralMDを提案する。
従来の数値MDシミュレーションと比較して1K$times$ Speedupを実現することにより,NeuralMDの有効性と有効性を示す。
論文 参考訳(メタデータ) (2024-01-26T09:35:17Z) - SIP: Injecting a Structural Inductive Bias into a Seq2Seq Model by Simulation [75.14793516745374]
本稿では, 構造的帰納バイアスをセック2セックモデルに効率よく注入し, 合成データの構造的変換をシミュレートする方法について述べる。
実験の結果,本手法は所望の帰納バイアスを付与し,FSTのようなタスクに対してより優れた数発学習を実現することがわかった。
論文 参考訳(メタデータ) (2023-10-01T21:19:12Z) - Mixup-Augmented Meta-Learning for Sample-Efficient Fine-Tuning of
Protein Simulators [29.22292758901411]
分子動力学タスクにソフトプロンプトに基づく学習手法を適用する。
本フレームワークは,ドメイン内データの精度を向上し,未知および分布外サンプルの強力な一般化能力を示す。
論文 参考訳(メタデータ) (2023-08-29T08:29:08Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
多要素代理モデリングは、異なるシミュレーション出力を融合させることで計算コストを削減する。
本稿では,多階層型階層型ニューラルネットワーク(MF-HNP)を提案する。
疫学および気候モデリングタスクにおけるMF-HNPの評価を行い、精度と不確実性評価の観点から競合性能を達成した。
論文 参考訳(メタデータ) (2022-06-10T04:54:13Z) - DagSim: Combining DAG-based model structure with unconstrained data
types and relations for flexible, transparent, and modularized data
simulation [2.685173014586162]
DAGベースのデータシミュレーションのためのPythonベースのフレームワークであるDagSimについて,変数型や関数関係に制約を加えることなく紹介する。
シミュレーションモデル構造を定義するための簡潔なYAMLフォーマットは透明性を促進する。
メタデータ変数が画像の形状を制御したり、バイオシーケンスのパターンを制御したりするユースケースを通して、DagSimの能力について説明する。
論文 参考訳(メタデータ) (2022-05-06T17:43:27Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process(INP)は、シミュレーションとアクティブな学習アプローチのためのディープラーニングフレームワークである。
能動的学習のために,NPベースモデルの潜時空間で計算された新しい取得関数Latent Information Gain (LIG)を提案する。
その結果,STNPは学習環境のベースラインを上回り,LIGは能動学習の最先端を達成していることがわかった。
論文 参考訳(メタデータ) (2021-06-05T01:31:51Z) - Efficient Characterization of Dynamic Response Variation Using
Multi-Fidelity Data Fusion through Composite Neural Network [9.446974144044733]
構造力学解析における多レベル応答予測の機会を利用する。
得られた多レベル異種データセットを完全に活用できる複合ニューラルネットワーク融合手法を定式化する。
論文 参考訳(メタデータ) (2020-05-07T02:44:03Z) - Using Machine Learning Approach for Computational Substructure in
Real-Time Hybrid Simulation [1.0323063834827415]
ハイブリッドシミュレーション(Hybrid Simulation, HS)は、計算サブストラクチャと、よく理解されたコンポーネントの数値モデルを組み合わせた、広く使われている構造試験手法である。
高速HSやリアルタイムHSの課題の1つは、比較的複雑な構造の解析的部分構造と関連している。
本研究では,解析的サブ構造の構造的動的挙動を表現するメタモデリング手法を提案する。
論文 参考訳(メタデータ) (2020-04-04T22:22:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。