論文の概要: Providing Previously Unseen Users Fair Recommendations Using Variational
Autoencoders
- arxiv url: http://arxiv.org/abs/2308.15230v1
- Date: Tue, 29 Aug 2023 11:37:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-30 14:28:54.240652
- Title: Providing Previously Unseen Users Fair Recommendations Using Variational
Autoencoders
- Title(参考訳): 変分オートエンコーダによる未確認ユーザへの推薦
- Authors: Bj{\o}rnar Vass{\o}y, Helge Langseth, Benjamin Kille
- Abstract要約: 明示的なユーザモデリングは、未確認のユーザに対してレコメンデーションを提供することが不可能なレコメンデーションシステムである。
本稿では,人口統計情報の符号化を制限することで,変分オートエンコーダに基づくレコメンデータシステムにおける識別を緩和する新しい手法を提案する。
- 参考スコア(独自算出の注目度): 0.9848183069251817
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: An emerging definition of fairness in machine learning requires that models
are oblivious to demographic user information, e.g., a user's gender or age
should not influence the model. Personalized recommender systems are
particularly prone to violating this definition through their explicit user
focus and user modelling. Explicit user modelling is also an aspect that makes
many recommender systems incapable of providing hitherto unseen users with
recommendations. We propose novel approaches for mitigating discrimination in
Variational Autoencoder-based recommender systems by limiting the encoding of
demographic information. The approaches are capable of, and evaluated on,
providing users that are not represented in the training data with fair
recommendations.
- Abstract(参考訳): 機械学習における公平性の定義は、例えば、ユーザの性別や年齢がモデルに影響を与えるべきではないなど、人口統計的なユーザ情報に制約のあるモデルを必要とする。
パーソナライズされたレコメンデーションシステムは、明示的なユーザフォーカスとユーザモデリングを通じて、特にこの定義に違反しがちである。
明示的なユーザモデリングは、多くのレコメンデーションシステムにおいて、目に見えないユーザにレコメンデーションを提供することができない側面でもある。
本稿では,変分オートエンコーダに基づくレコメンダシステムにおいて,人口統計情報の符号化を制限して識別を緩和する新しい手法を提案する。
このアプローチはトレーニングデータに表現されていないユーザに対して、公正なレコメンデーションを付与し、評価することができる。
関連論文リスト
- User Consented Federated Recommender System Against Personalized
Attribute Inference Attack [55.24441467292359]
本稿では,ユーザの異なるプライバシーニーズを柔軟に満たすために,ユーザ合意型フェデレーションレコメンデーションシステム(UC-FedRec)を提案する。
UC-FedRecは、ユーザーが様々な要求を満たすためにプライバシー設定を自己定義し、ユーザーの同意を得てレコメンデーションを行うことを可能にする。
論文 参考訳(メタデータ) (2023-12-23T09:44:57Z) - Separating and Learning Latent Confounders to Enhancing User Preferences Modeling [6.0853798070913845]
我々は、推薦のための新しいフレームワーク、SLFR(Separating and Learning Latent Confounders for Recommendation)を提案する。
SLFRは、未測定の共同設立者の表現を取得し、ユーザ嗜好と未測定の共同設立者を遠ざけ、反実的なフィードバックを識別する。
5つの実世界のデータセットで実験を行い、本手法の利点を検証した。
論文 参考訳(メタデータ) (2023-11-02T08:42:50Z) - Explainable Active Learning for Preference Elicitation [0.0]
我々は、最小限のユーザ労力で情報取得を最大化することを目的として、この問題を解決するためにアクティブラーニング(AL)を採用している。
ALは、大きなラベルのない集合から情報的データを選択して、それらをラベル付けするオラクルを問い合わせる。
ベースとなる機械学習(ML)モデルを更新するために、ユーザからのフィードバック(提示された項目に関するシステムの説明のために)を情報的なサンプルから収集する。
論文 参考訳(メタデータ) (2023-09-01T09:22:33Z) - Improving Recommendation Fairness via Data Augmentation [66.4071365614835]
協調フィルタリングに基づくレコメンデーションは、すべてのユーザの過去の行動データからユーザの好みを学習し、意思決定を容易にするために人気がある。
ユーザの敏感な属性に応じて異なるユーザグループに対して等しく機能しない場合には,レコメンダシステムは不公平であると考えられる。
本稿では,データ拡張の観点から,レコメンデーションフェアネスを改善する方法について検討する。
論文 参考訳(メタデータ) (2023-02-13T13:11:46Z) - Latent User Intent Modeling for Sequential Recommenders [92.66888409973495]
逐次リコメンデータモデルは、プラットフォーム上での氏のインタラクション履歴に基づいて、ユーザが次に対話する可能性のあるアイテムを予測することを学習する。
しかし、ほとんどのシーケンシャルなレコメンデータは、ユーザの意図に対する高いレベルの理解を欠いている。
したがって、インテントモデリングはユーザー理解と長期ユーザーエクスペリエンスの最適化に不可欠である。
論文 参考訳(メタデータ) (2022-11-17T19:00:24Z) - Recommendation with User Active Disclosing Willingness [20.306413327597603]
本研究では,ユーザが異なる行動を公開する上で,その「意志」を示すことを許される,新しい推薦パラダイムについて検討する。
我々は,推薦品質とユーザ開示意欲のバランスをとる上で,モデルの有効性を示すため,広範囲な実験を行った。
論文 参考訳(メタデータ) (2022-10-25T04:43:40Z) - PURS: Personalized Unexpected Recommender System for Improving User
Satisfaction [76.98616102965023]
本稿では、予期せぬことを推奨プロセスに組み込んだ、新しいPersonalized Unexpected Recommender System(PURS)モデルについて述べる。
3つの実世界のデータセットに対する大規模なオフライン実験は、提案されたPURSモデルが最先端のベースラインアプローチを大幅に上回っていることを示している。
論文 参考訳(メタデータ) (2021-06-05T01:33:21Z) - Towards Personalized Fairness based on Causal Notion [18.5897206797918]
本稿では,逆学習による対実的公正なレコメンデーションを実現するための枠組みを提案する。
提案手法は,推奨性能の高いユーザに対して,より公平なレコメンデーションを生成できる。
論文 参考訳(メタデータ) (2021-05-20T15:24:34Z) - Explainable Recommender Systems via Resolving Learning Representations [57.24565012731325]
説明はユーザー体験を改善し、システムの欠陥を発見するのに役立つ。
本稿では,表現学習プロセスの透明性を向上させることによって,説明可能な新しい推薦モデルを提案する。
論文 参考訳(メタデータ) (2020-08-21T05:30:48Z) - Fairness-Aware Explainable Recommendation over Knowledge Graphs [73.81994676695346]
ユーザのアクティビティのレベルに応じて異なるグループのユーザを分析し、異なるグループ間での推奨パフォーマンスにバイアスが存在することを確認する。
不活性なユーザは、不活性なユーザのためのトレーニングデータが不十分なため、不満足なレコメンデーションを受けやすい可能性がある。
本稿では、知識グラフに対する説明可能な推奨という文脈で、この問題を緩和するために再ランク付けすることで、公平性に制約されたアプローチを提案する。
論文 参考訳(メタデータ) (2020-06-03T05:04:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。