RED: A Systematic Real-Time Scheduling Approach for Robotic
Environmental Dynamics
- URL: http://arxiv.org/abs/2308.15368v1
- Date: Tue, 29 Aug 2023 15:04:08 GMT
- Title: RED: A Systematic Real-Time Scheduling Approach for Robotic
Environmental Dynamics
- Authors: Zexin Li, Tao Ren, Xiaoxi He and Cong Liu
- Abstract summary: We introduce RED, a systematic real-time scheduling approach designed to support multi-task deep neural network workloads in resource-limited robotic systems.
It is designed to adaptively manage the Robotic Environmental Dynamics (RED) while adhering to real-time constraints.
- Score: 11.38746414146899
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Intelligent robots are designed to effectively navigate dynamic and
unpredictable environments laden with moving mechanical elements and objects.
Such environment-induced dynamics, including moving obstacles, can readily
alter the computational demand (e.g., the creation of new tasks) and the
structure of workloads (e.g., precedence constraints among tasks) during
runtime, thereby adversely affecting overall system performance. This challenge
is amplified when multi-task inference is expected on robots operating under
stringent resource and real-time constraints. To address such a challenge, we
introduce RED, a systematic real-time scheduling approach designed to support
multi-task deep neural network workloads in resource-limited robotic systems.
It is designed to adaptively manage the Robotic Environmental Dynamics (RED)
while adhering to real-time constraints. At the core of RED lies a
deadline-based scheduler that employs an intermediate deadline assignment
policy, effectively managing to change workloads and asynchronous inference
prompted by complex, unpredictable environments. This scheduling framework also
facilitates the flexible deployment of MIMONet (multi-input multi-output neural
networks), which are commonly utilized in multi-tasking robotic systems to
circumvent memory bottlenecks. Building on this scheduling framework, RED
recognizes and leverages a unique characteristic of MIMONet: its weight-shared
architecture. To further accommodate and exploit this feature, RED devises a
novel and effective workload refinement and reconstruction process. This
process ensures the scheduling framework's compatibility with MIMONet and
maximizes efficiency.
Related papers
- DeeR-VLA: Dynamic Inference of Multimodal Large Language Models for Efficient Robot Execution [114.61347672265076]
Development of MLLMs for real-world robots is challenging due to the typically limited computation and memory capacities available on robotic platforms.
We propose a Dynamic Early-Exit Framework for Robotic Vision-Language-Action Model (DeeR) that automatically adjusts the size of the activated MLLM.
DeeR demonstrates significant reductions in computational costs of LLM by 5.2-6.5x and GPU memory of LLM by 2-6x without compromising performance.
arXiv Detail & Related papers (2024-11-04T18:26:08Z) - Asynchronous Tool Usage for Real-Time Agents [61.3041983544042]
We introduce asynchronous AI agents capable of parallel processing and real-time tool-use.
Our key contribution is an event-driven finite-state machine architecture for agent execution and prompting.
This work presents both a conceptual framework and practical tools for creating AI agents capable of fluid, multitasking interactions.
arXiv Detail & Related papers (2024-10-28T23:57:19Z) - A Meta-Engine Framework for Interleaved Task and Motion Planning using Topological Refinements [51.54559117314768]
Task And Motion Planning (TAMP) is the problem of finding a solution to an automated planning problem.
We propose a general and open-source framework for modeling and benchmarking TAMP problems.
We introduce an innovative meta-technique to solve TAMP problems involving moving agents and multiple task-state-dependent obstacles.
arXiv Detail & Related papers (2024-08-11T14:57:57Z) - Synergising Human-like Responses and Machine Intelligence for Planning in Disaster Response [10.294618771570985]
We propose an attention-based cognitive architecture inspired by Dual Process Theory (DPT)
This framework integrates, in an online fashion, rapid yet (human-like) responses with the slow but optimized planning capabilities of machine intelligence.
arXiv Detail & Related papers (2024-04-15T15:47:08Z) - Constant-time Motion Planning with Anytime Refinement for Manipulation [17.543746580669662]
We propose an anytime refinement approach that works in combination with constant-time motion planners (CTMP) algorithms.
Our proposed framework, as it operates as a constant time algorithm, rapidly generates an initial solution within a user-defined time threshold.
functioning as an anytime algorithm, it iteratively refines the solution's quality within the allocated time budget.
arXiv Detail & Related papers (2023-11-01T20:40:10Z) - RObotic MAnipulation Network (ROMAN) $\unicode{x2013}$ Hybrid
Hierarchical Learning for Solving Complex Sequential Tasks [70.69063219750952]
We present a Hybrid Hierarchical Learning framework, the Robotic Manipulation Network (ROMAN)
ROMAN achieves task versatility and robust failure recovery by integrating behavioural cloning, imitation learning, and reinforcement learning.
Experimental results show that by orchestrating and activating these specialised manipulation experts, ROMAN generates correct sequential activations for accomplishing long sequences of sophisticated manipulation tasks.
arXiv Detail & Related papers (2023-06-30T20:35:22Z) - Optimal task and motion planning and execution for human-robot
multi-agent systems in dynamic environments [54.39292848359306]
We propose a combined task and motion planning approach to optimize sequencing, assignment, and execution of tasks.
The framework relies on decoupling tasks and actions, where an action is one possible geometric realization of a symbolic task.
We demonstrate the approach effectiveness in a collaborative manufacturing scenario, in which a robotic arm and a human worker shall assemble a mosaic.
arXiv Detail & Related papers (2023-03-27T01:50:45Z) - Efficient Skill Acquisition for Complex Manipulation Tasks in Obstructed
Environments [18.348489257164356]
We propose a system for efficient skill acquisition that leverages an object-centric generative model (OCGM) for versatile goal identification.
OCGM enables one-shot target object identification and re-identification in new scenes, allowing MP to guide the robot to the target object while avoiding obstacles.
arXiv Detail & Related papers (2023-03-06T18:49:59Z) - Learning Coordination Policies over Heterogeneous Graphs for Human-Robot
Teams via Recurrent Neural Schedule Propagation [0.0]
HybridNet is a deep learning-based framework for scheduling human-robot teams.
We develop a virtual scheduling environment for mixed human-robot teams in a multiround setting.
arXiv Detail & Related papers (2023-01-30T20:42:06Z) - Learning to Coordinate for a Worker-Station Multi-robot System in Planar
Coverage Tasks [16.323122275188354]
We focus on the multi-robot coverage path planning problem in large-scale planar areas with random dynamic interferers.
We introduce a worker-station MRS consisting of multiple workers with limited resources for actual work, and one station with enough resources for resource replenishment.
We propose an end-to-end decentralized online planning method, which simultaneously solves coverage planning for workers and rendezvous planning for station.
arXiv Detail & Related papers (2022-08-05T05:36:42Z) - Controllable Dynamic Multi-Task Architectures [92.74372912009127]
We propose a controllable multi-task network that dynamically adjusts its architecture and weights to match the desired task preference as well as the resource constraints.
We propose a disentangled training of two hypernetworks, by exploiting task affinity and a novel branching regularized loss, to take input preferences and accordingly predict tree-structured models with adapted weights.
arXiv Detail & Related papers (2022-03-28T17:56:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.