Simultaneous Multi-Robot Motion Planning with Projected Diffusion Models
- URL: http://arxiv.org/abs/2502.03607v1
- Date: Wed, 05 Feb 2025 20:51:28 GMT
- Title: Simultaneous Multi-Robot Motion Planning with Projected Diffusion Models
- Authors: Jinhao Liang, Jacob K Christopher, Sven Koenig, Ferdinando Fioretto,
- Abstract summary: Simultaneous MRMP Diffusion (SMD) is a novel approach integrating constrained optimization into the diffusion sampling process to produce kinematically feasible trajectories.
The paper introduces a comprehensive MRMP benchmark to evaluate trajectory planning algorithms across scenarios with varying robot densities, obstacle complexities, and motion constraints.
- Score: 57.45019514036948
- License:
- Abstract: Recent advances in diffusion models hold significant potential in robotics, enabling the generation of diverse and smooth trajectories directly from raw representations of the environment. Despite this promise, applying diffusion models to motion planning remains challenging due to their difficulty in enforcing critical constraints, such as collision avoidance and kinematic feasibility. These limitations become even more pronounced in Multi-Robot Motion Planning (MRMP), where multiple robots must coordinate in shared spaces. To address this challenge, this work proposes Simultaneous MRMP Diffusion (SMD), a novel approach integrating constrained optimization into the diffusion sampling process to produce collision-free, kinematically feasible trajectories. Additionally, the paper introduces a comprehensive MRMP benchmark to evaluate trajectory planning algorithms across scenarios with varying robot densities, obstacle complexities, and motion constraints. Experimental results show SMD consistently outperforms classical and learning-based motion planners, achieving higher success rates and efficiency in complex multi-robot environments.
Related papers
- RobotDiffuse: Motion Planning for Redundant Manipulator based on Diffusion Model [13.110235244912474]
Redundant manipulators offer enhanced kinematic performance and versatility.
Motion planning for these manipulators is challenging due to increased DOFs and complex, dynamic environments.
This paper introduces RobotDiffuse, a diffusion model-based approach for motion planning in redundant manipulators.
arXiv Detail & Related papers (2024-12-27T07:34:54Z) - Multi-Agent Path Finding in Continuous Spaces with Projected Diffusion Models [57.45019514036948]
Multi-Agent Path Finding (MAPF) is a fundamental problem in robotics.
This work proposes a novel approach that integrates constrained optimization with diffusion models for MAPF in continuous spaces.
arXiv Detail & Related papers (2024-12-23T21:27:19Z) - Multi-Robot Motion Planning with Diffusion Models [22.08293753545732]
We propose a method for generating collision-free multi-robot trajectories.
Our algorithm combines learned diffusion models with classical search-based techniques.
We show how to compose multiple diffusion models to plan in large environments.
arXiv Detail & Related papers (2024-10-04T01:31:13Z) - A Meta-Engine Framework for Interleaved Task and Motion Planning using Topological Refinements [51.54559117314768]
Task And Motion Planning (TAMP) is the problem of finding a solution to an automated planning problem.
We propose a general and open-source framework for modeling and benchmarking TAMP problems.
We introduce an innovative meta-technique to solve TAMP problems involving moving agents and multiple task-state-dependent obstacles.
arXiv Detail & Related papers (2024-08-11T14:57:57Z) - Accelerating Search-Based Planning for Multi-Robot Manipulation by Leveraging Online-Generated Experiences [20.879194337982803]
Multi-Agent Path-Finding (MAPF) algorithms have shown promise in discrete 2D domains, providing rigorous guarantees.
We propose an approach for accelerating conflict-based search algorithms by leveraging their repetitive and incremental nature.
arXiv Detail & Related papers (2024-03-29T20:31:07Z) - EMDM: Efficient Motion Diffusion Model for Fast and High-Quality Motion Generation [57.539634387672656]
Current state-of-the-art generative diffusion models have produced impressive results but struggle to achieve fast generation without sacrificing quality.
We introduce Efficient Motion Diffusion Model (EMDM) for fast and high-quality human motion generation.
arXiv Detail & Related papers (2023-12-04T18:58:38Z) - Scalable Multi-robot Motion Planning for Congested Environments With
Topological Guidance [2.846144602096543]
Multi-robot motion planning (MRMP) is the problem of finding collision-free paths for a set of robots in a continuous state space.
We extend an existing single-robot motion planning method to leverage the improved efficiency provided by topological guidance.
We demonstrate our method's ability to efficiently plan paths in complex environments with many narrow passages, scaling to robot teams of size up to 25 times larger than existing methods.
arXiv Detail & Related papers (2022-10-13T16:26:01Z) - Simultaneous Contact-Rich Grasping and Locomotion via Distributed
Optimization Enabling Free-Climbing for Multi-Limbed Robots [60.06216976204385]
We present an efficient motion planning framework for simultaneously solving locomotion, grasping, and contact problems.
We demonstrate our proposed framework in the hardware experiments, showing that the multi-limbed robot is able to realize various motions including free-climbing at a slope angle 45deg with a much shorter planning time.
arXiv Detail & Related papers (2022-07-04T13:52:10Z) - Nonprehensile Riemannian Motion Predictive Control [57.295751294224765]
We introduce a novel Real-to-Sim reward analysis technique to reliably imagine and predict the outcome of taking possible actions for a real robotic platform.
We produce a closed-loop controller to reactively push objects in a continuous action space.
We observe that RMPC is robust in cluttered as well as occluded environments and outperforms the baselines.
arXiv Detail & Related papers (2021-11-15T18:50:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.