論文の概要: Beyond Traditional Neural Networks: Toward adding Reasoning and Learning
Capabilities through Computational Logic Techniques
- arxiv url: http://arxiv.org/abs/2308.15899v1
- Date: Wed, 30 Aug 2023 09:09:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-31 13:52:37.310849
- Title: Beyond Traditional Neural Networks: Toward adding Reasoning and Learning
Capabilities through Computational Logic Techniques
- Title(参考訳): 従来のニューラルネットワークを超えて:計算論理技術による推論と学習機能の追加を目指して
- Authors: Andrea Rafanelli (University of Pisa, Italy, University of L'Aquila,
Italy)
- Abstract要約: 本研究では,知識注入プロセスを改善し,MLとロジックの要素をマルチエージェントシステムに統合する手法を提案する。
Neuro-Symbolic AIは、ニューラルネットワークとシンボリック推論の強みを組み合わせた、有望なアプローチとして登場した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep Learning (DL) models have become popular for solving complex problems,
but they have limitations such as the need for high-quality training data, lack
of transparency, and robustness issues. Neuro-Symbolic AI has emerged as a
promising approach combining the strengths of neural networks and symbolic
reasoning. Symbolic knowledge injection (SKI) techniques are a popular method
to incorporate symbolic knowledge into sub-symbolic systems. This work proposes
solutions to improve the knowledge injection process and integrate elements of
ML and logic into multi-agent systems (MAS).
- Abstract(参考訳): ディープラーニング(DL)モデルは複雑な問題を解決するために人気があるが、高品質なトレーニングデータの必要性、透明性の欠如、堅牢性の問題といった制限がある。
Neuro-Symbolic AIは、ニューラルネットワークの強みとシンボリック推論を組み合わせた有望なアプローチとして登場した。
シンボリック・ナレッジ・インジェクション(SKI)技術は、シンボリック・ナレッジをサブシンボリック・システムに組み込む一般的な手法である。
本研究では、知識注入プロセスを改善し、MLとロジックの要素をマルチエージェントシステム(MAS)に統合するソリューションを提案する。
関連論文リスト
- Towards Efficient Neuro-Symbolic AI: From Workload Characterization to Hardware Architecture [22.274696991107206]
ニューロシンボリックAIは、解釈可能性、堅牢性、信頼性を高めるニューラルネットワークとシンボリックアプローチを融合して、有望なパラダイムとして出現する。
最近のニューロシンボリックシステムは、推論と認知能力を備えた協調的な人間-AIシナリオにおいて大きな可能性を示している。
まず, ニューロシンボリックAIアルゴリズムを体系的に分類し, 実行時, メモリ, 計算演算子, 疎結合性, システム特性を実験的に評価し, 解析する。
論文 参考訳(メタデータ) (2024-09-20T01:32:14Z) - Exploring knowledge graph-based neural-symbolic system from application perspective [0.0]
AIシステムにおけるヒューマンライクな推論と解釈可能性の実現は、依然として大きな課題である。
ニューラルネットワークをシンボリックシステムと統合するNeural-Symbolicパラダイムは、より解釈可能なAIへの有望な経路を提供する。
本稿では,知識グラフに基づくニューラルシンボリック統合の最近の進歩について考察する。
論文 参考訳(メタデータ) (2024-05-06T14:40:50Z) - Simple and Effective Transfer Learning for Neuro-Symbolic Integration [50.592338727912946]
この問題の潜在的な解決策はNeuro-Symbolic Integration (NeSy)であり、ニューラルアプローチとシンボリック推論を組み合わせる。
これらの手法のほとんどは、認識をシンボルにマッピングするニューラルネットワークと、下流タスクの出力を予測する論理的論理的推論を利用する。
それらは、緩やかな収束、複雑な知覚タスクの学習困難、局所的なミニマへの収束など、いくつかの問題に悩まされている。
本稿では,これらの問題を改善するための簡易かつ効果的な方法を提案する。
論文 参考訳(メタデータ) (2024-02-21T15:51:01Z) - The Role of Foundation Models in Neuro-Symbolic Learning and Reasoning [54.56905063752427]
Neuro-Symbolic AI(NeSy)は、AIシステムの安全なデプロイを保証することを約束している。
ニューラルネットワークとシンボリックコンポーネントを順次トレーニングする既存のパイプラインは、広範なラベリングを必要とする。
新しいアーキテクチャであるNeSyGPTは、生データから象徴的特徴を抽出する視覚言語基盤モデルを微調整する。
論文 参考訳(メタデータ) (2024-02-02T20:33:14Z) - NeuralFastLAS: Fast Logic-Based Learning from Raw Data [54.938128496934695]
シンボリック・ルール学習者は解釈可能な解を生成するが、入力を記号的に符号化する必要がある。
ニューロシンボリックアプローチは、ニューラルネットワークを使用して生データを潜在シンボリック概念にマッピングすることで、この問題を克服する。
我々は,ニューラルネットワークを記号学習者と共同でトレーニングする,スケーラブルで高速なエンドツーエンドアプローチであるNeuralFastLASを紹介する。
論文 参考訳(メタデータ) (2023-10-08T12:33:42Z) - Extensions to Generalized Annotated Logic and an Equivalent Neural
Architecture [4.855957436171202]
本稿では,ニューロシンボリックシステムに対する望ましい基準のリストを提案し,既存のアプローチのいくつかがこれらの基準にどう対処するかを検討する。
次に、等価なニューラルアーキテクチャの作成を可能にするアノテーション付き一般化論理の拡張を提案する。
トレーニングプロセスの継続的な最適化に依存する従来のアプローチとは異なり、当社のフレームワークは、離散最適化を使用する二項化ニューラルネットワークとして設計されている。
論文 参考訳(メタデータ) (2023-02-23T17:39:46Z) - Deep learning applied to computational mechanics: A comprehensive
review, state of the art, and the classics [77.34726150561087]
人工知能,特に深層学習(DL)の最近の進歩を概観する。
ハイブリッドおよび純粋機械学習(ML)の手法について論じる。
AIの歴史と限界は、特に古典の誤解や誤解を指摘し、議論され、議論される。
論文 参考訳(メタデータ) (2022-12-18T02:03:00Z) - Synergistic information supports modality integration and flexible
learning in neural networks solving multiple tasks [107.8565143456161]
本稿では,様々な認知タスクを行う単純な人工ニューラルネットワークが採用する情報処理戦略について検討する。
結果は、ニューラルネットワークが複数の多様なタスクを学習するにつれて、シナジーが増加することを示している。
トレーニング中に無作為にニューロンを停止させると、ネットワークの冗長性が増加し、ロバスト性の増加に対応する。
論文 参考訳(メタデータ) (2022-10-06T15:36:27Z) - Knowledge-based Analogical Reasoning in Neuro-symbolic Latent Spaces [20.260546238369205]
ニューラルネットワークのパターン認識能力とシンボリック推論と背景知識を組み合わせたフレームワークを提案する。
ニューラルアルゴリズム推論」アプローチ [DeepMind 2020] からインスピレーションを得て、問題固有のバックグラウンド知識を使用します。
我々は、RAVENのプログレッシブ・マトリクスにおける視覚的類似性の問題でこれを検証し、人間のパフォーマンスと競合する精度を実現する。
論文 参考訳(メタデータ) (2022-09-19T04:03:20Z) - Neuro-Symbolic Learning of Answer Set Programs from Raw Data [54.56905063752427]
Neuro-Symbolic AIは、シンボリックテクニックの解釈可能性と、生データから学ぶ深層学習の能力を組み合わせることを目的としている。
本稿では,ニューラルネットワークを用いて生データから潜在概念を抽出するNSIL(Neuro-Symbolic Inductive Learner)を提案する。
NSILは表現力のある知識を学習し、計算的に複雑な問題を解き、精度とデータ効率の観点から最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2022-05-25T12:41:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。