Likelihood-based inference and forecasting for trawl processes: a
stochastic optimization approach
- URL: http://arxiv.org/abs/2308.16092v1
- Date: Wed, 30 Aug 2023 15:37:48 GMT
- Title: Likelihood-based inference and forecasting for trawl processes: a
stochastic optimization approach
- Authors: Dan Leonte, Almut E. D. Veraart
- Abstract summary: We develop the first likelihood-based methodology for the inference of real-valued trawl processes.
We introduce novel deterministic and probabilistic forecasting methods.
We release a Python library which can be used to fit a large class of trawl processes.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider trawl processes, which are stationary and infinitely divisible
stochastic processes and can describe a wide range of statistical properties,
such as heavy tails and long memory. In this paper, we develop the first
likelihood-based methodology for the inference of real-valued trawl processes
and introduce novel deterministic and probabilistic forecasting methods. Being
non-Markovian, with a highly intractable likelihood function, trawl processes
require the use of composite likelihood functions to parsimoniously capture
their statistical properties. We formulate the composite likelihood estimation
as a stochastic optimization problem for which it is feasible to implement
iterative gradient descent methods. We derive novel gradient estimators with
variances that are reduced by several orders of magnitude. We analyze both the
theoretical properties and practical implementation details of these estimators
and release a Python library which can be used to fit a large class of trawl
processes. In a simulation study, we demonstrate that our estimators outperform
the generalized method of moments estimators in terms of both parameter
estimation error and out-of-sample forecasting error. Finally, we formalize a
stochastic chain rule for our gradient estimators. We apply the new theory to
trawl processes and provide a unified likelihood-based methodology for the
inference of both real-valued and integer-valued trawl processes.
Related papers
- Iterative Methods for Full-Scale Gaussian Process Approximations for Large Spatial Data [9.913418444556486]
We show how iterative methods can be used to reduce the computational costs for calculating likelihoods, gradients, and predictive distributions with FSAs.
We also present a novel, accurate, and fast way to calculate predictive variances relying on estimations and iterative methods.
All methods are implemented in a free C++ software library with high-level Python and R packages.
arXiv Detail & Related papers (2024-05-23T12:25:22Z) - Logistic-beta processes for dependent random probabilities with beta marginals [58.91121576998588]
We propose a novel process called the logistic-beta process, whose logistic transformation yields a process with common beta marginals.
It can model dependence on both discrete and continuous domains, such as space or time, and has a flexible dependence structure through correlation kernels.
We illustrate the benefits through nonparametric binary regression and conditional density estimation examples, both in simulation studies and in a pregnancy outcome application.
arXiv Detail & Related papers (2024-02-10T21:41:32Z) - Bayesian Nonparametrics Meets Data-Driven Distributionally Robust Optimization [29.24821214671497]
Training machine learning and statistical models often involve optimizing a data-driven risk criterion.
We propose a novel robust criterion by combining insights from Bayesian nonparametric (i.e., Dirichlet process) theory and a recent decision-theoretic model of smooth ambiguity-averse preferences.
For practical implementation, we propose and study tractable approximations of the criterion based on well-known Dirichlet process representations.
arXiv Detail & Related papers (2024-01-28T21:19:15Z) - Sparse Variational Student-t Processes [8.46450148172407]
Student-t Processes are used to model heavy-tailed distributions and datasets with outliers.
We propose a sparse representation framework to allow Student-t Processes to be more flexible for real-world datasets.
We evaluate two proposed approaches on various synthetic and real-world datasets from UCI and Kaggle.
arXiv Detail & Related papers (2023-12-09T12:55:20Z) - A Heavy-Tailed Algebra for Probabilistic Programming [53.32246823168763]
We propose a systematic approach for analyzing the tails of random variables.
We show how this approach can be used during the static analysis (before drawing samples) pass of a probabilistic programming language compiler.
Our empirical results confirm that inference algorithms that leverage our heavy-tailed algebra attain superior performance across a number of density modeling and variational inference tasks.
arXiv Detail & Related papers (2023-06-15T16:37:36Z) - Learning Unnormalized Statistical Models via Compositional Optimization [73.30514599338407]
Noise-contrastive estimation(NCE) has been proposed by formulating the objective as the logistic loss of the real data and the artificial noise.
In this paper, we study it a direct approach for optimizing the negative log-likelihood of unnormalized models.
arXiv Detail & Related papers (2023-06-13T01:18:16Z) - Semi-Parametric Inference for Doubly Stochastic Spatial Point Processes: An Approximate Penalized Poisson Likelihood Approach [3.085995273374333]
Doubly-stochastic point processes model the occurrence of events over a spatial domain as an inhomogeneous process conditioned on the realization of a random intensity function.
Existing implementations of doubly-stochastic spatial models are computationally demanding, often have limited theoretical guarantee, and/or rely on restrictive assumptions.
arXiv Detail & Related papers (2023-06-11T19:48:39Z) - A Tale of Sampling and Estimation in Discounted Reinforcement Learning [50.43256303670011]
We present a minimax lower bound on the discounted mean estimation problem.
We show that estimating the mean by directly sampling from the discounted kernel of the Markov process brings compelling statistical properties.
arXiv Detail & Related papers (2023-04-11T09:13:17Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
We consider the task of heavy-tailed statistical estimation given streaming $p$ samples.
We design a clipped gradient descent and provide an improved analysis under a more nuanced condition on the noise of gradients.
arXiv Detail & Related papers (2021-08-25T21:30:27Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
Simulation-based inference enables learning the parameters of a model even when its likelihood cannot be computed in practice.
One class of methods uses data simulated with different parameters to infer an amortized estimator for the likelihood-to-evidence ratio.
We show that this approach can be formulated in terms of mutual information between model parameters and simulated data.
arXiv Detail & Related papers (2021-06-03T12:59:16Z) - New Algorithms And Fast Implementations To Approximate Stochastic
Processes [0.0]
We present new algorithms and fast implementations to find efficient approximations for modelling processes.
The goal is always to find a finite model, which represents a given knowledge about the real data process as accurate as possible.
arXiv Detail & Related papers (2020-12-01T06:14:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.