論文の概要: LM-Infinite: Zero-Shot Extreme Length Generalization for Large Language Models
- arxiv url: http://arxiv.org/abs/2308.16137v7
- Date: Mon, 24 Jun 2024 21:22:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 21:09:52.026845
- Title: LM-Infinite: Zero-Shot Extreme Length Generalization for Large Language Models
- Title(参考訳): LM-infinite: 大規模言語モデルのためのゼロショット極長一般化
- Authors: Chi Han, Qifan Wang, Hao Peng, Wenhan Xiong, Yu Chen, Heng Ji, Sinong Wang,
- Abstract要約: 大規模言語モデル(LLM)は通常、トランスフォーマーアーキテクチャの2次複雑さのために短いテキストセグメント(例:4Kトークン)でトレーニングする。
この研究は、この長大一般化失敗に寄与する3つの主要な要因を特定する。
本研究では,LLMの長期処理能力を高めるための簡易かつ効果的な手法であるLM-Infiniteを提案する。
- 参考スコア(独自算出の注目度): 83.98062659664785
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Today's large language models (LLMs) typically train on short text segments (e.g., <4K tokens) due to the quadratic complexity of their Transformer architectures. As a result, their performance suffers drastically on inputs longer than those encountered during training, substantially limiting their applications in real-world tasks involving long contexts such as encoding scientific articles, code repositories, or long dialogues. Through theoretical analysis and empirical investigation, this work identifies three major factors contributing to this length generalization failure. Our theoretical analysis further reveals that commonly used techniques like truncating the attention window or relative positional encodings are inadequate to address them. Answering these challenges, we propose LM-Infinite, a simple and effective method for enhancing LLMs' capabilities of handling long contexts. LM-Infinite is highly flexible and can be used with most modern LLMs off-the-shelf. Without any parameter updates, it allows LLMs pre-trained with 2K or 4K-long segments to generalize to up to 200M length inputs while retaining perplexity. It also improves performance on downstream tasks such as Passkey Retrieval and Qasper in the zero-shot setting. LM-Infinite brings substantial efficiency improvements: it achieves 2.7x decoding speed up and 7.5x memory saving over the original model. Our codes are released at \url{https://github.com/Glaciohound/LM-Infinite}.
- Abstract(参考訳): 今日の大きな言語モデル(LLM)は、Transformerアーキテクチャの2次複雑さのため、通常、短いテキストセグメント(例: <4Kトークン)でトレーニングする。
結果として、彼らのパフォーマンスは、トレーニング中に遭遇したものよりもはるかに長いインプットに悩まされ、科学論文のエンコーディングやコードリポジトリ、ロングダイアログなどの長いコンテキストを含む現実世界のタスクへの応用を著しく制限する。
理論的解析と実証的研究を通じて、この長大一般化失敗に寄与する3つの主要な要因を同定する。
理論的解析により,注意窓の切り抜きや相対的な位置エンコーディングなどの手法が不十分であることが明らかになった。
これらの課題に答え、長いコンテキストを扱うLLMの能力をシンプルかつ効果的に向上するLM-Infiniteを提案する。
LM-Infiniteは非常に柔軟で、ほとんどの近代的なLCMで使用することができる。
パラメータの更新がないため、2Kまたは4Kのセグメントで事前訓練されたLCMは、パープレキシティを維持しながら最大2億の入力を一般化することができる。
ゼロショット設定では、Passkey RetrievalやQasperといった下流タスクのパフォーマンスも向上する。
LM-Infiniteは2.7倍のデコード速度と7.5倍のメモリ節約を実現している。
私たちのコードは \url{https://github.com/Glaciohound/LM-Infinite} でリリースされています。
関連論文リスト
- Nearest Neighbor Speculative Decoding for LLM Generation and Attribution [87.3259169631789]
Nearest Speculative Decoding (NEST)は、任意の長さの実世界のテキストスパンをLM世代に組み込むことができ、それらのソースへの属性を提供する。
NESTは、様々な知識集約タスクにおいて、基本LMの生成品質と帰属率を大幅に向上させる。
さらに、NESTは、Llama-2-Chat 70Bに適用した場合の推論時間において1.8倍のスピードアップを達成することにより、生成速度を大幅に改善する。
論文 参考訳(メタデータ) (2024-05-29T17:55:03Z) - SirLLM: Streaming Infinite Retentive LLM [74.40196814292426]
大きな言語モデル(LLM)は任意の長さの入力を処理し、メモリの程度を維持する。
近年の取り組みでは、過度に長いテキスト入力の圧力を軽減するためにストリーミング入力が採用されている。
本稿では,SirLLM(Streaming Infinite Retentive LLM)を提案する。
論文 参考訳(メタデータ) (2024-05-21T06:37:03Z) - Hierarchical Context Merging: Better Long Context Understanding for Pre-trained LLMs [61.40047491337793]
本稿では,大規模言語モデルの制約を克服する新しいトレーニングフリースキームである階層型cOntext MERging(HOMER)を提案する。
HomeRは、長いインプットを管理可能なチャンクに分割する、分別/対数アルゴリズムを使用する。
トークン削減技術がマージ毎に先行し、メモリ使用効率が保証される。
論文 参考訳(メタデータ) (2024-04-16T06:34:08Z) - Think Big, Generate Quick: LLM-to-SLM for Fast Autoregressive Decoding [15.723047976314751]
大規模言語モデル(LLM)は、実際にはユビキタスなものとなり、翻訳、要約、命令の追従といった生成タスクに広く利用されている。
本稿では,異なるサイズの言語モデルを組み合わせて,自己回帰復号化の効率を高めるハイブリッド手法を提案する。
論文 参考訳(メタデータ) (2024-02-26T18:59:28Z) - InfLLM: Training-Free Long-Context Extrapolation for LLMs with an Efficient Context Memory [93.20588235940453]
本稿では,トレーニング不要なメモリベースのInfLLMを提案する。
InfLLMは、リモートコンテキストを追加のメモリユニットに格納し、トークン関連ユニットを注目するために効率的なメカニズムを使用する。
シーケンス長が$1,024$Kにスケールしても、InfLLMは依然として、長距離依存関係を効果的にキャプチャする。
論文 参考訳(メタデータ) (2024-02-07T06:50:42Z) - Break the Sequential Dependency of LLM Inference Using Lookahead
Decoding [27.87483106859749]
Lookahead decodingは、大規模言語モデル(LLM)のための正確な並列デコーディングアルゴリズムである。
実装により,MT-benchでは1.8倍,コード補完タスクでは4倍まで高速に自動回帰復号を行うことができる。
論文 参考訳(メタデータ) (2024-02-03T06:37:50Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
大規模言語モデル(LLM)は、言語理解と生成において顕著な能力を示している。
タスク非依存であり、元のトレーニングデータセットへの依存を最小限に抑えるという2つの制約の範囲内でLLMの圧縮に取り組む。
LLM-Prunerという名前のこの手法は、非臨界結合構造を選択的に除去する構造プルーニングを採用する。
論文 参考訳(メタデータ) (2023-05-19T12:10:53Z) - Efficient Long-Text Understanding with Short-Text Models [38.8375175429553]
SLEDは、バトルテストされた短文事前訓練されたLMを再利用し活用する、長いシーケンスを処理するための単純なアプローチである。
入力を重なり合うチャンクに分割し、それぞれを短文のLMエンコーダでエンコードし、事前訓練されたデコーダを使用してチャンク間で情報を融合する。
SLEDは、最大50倍の大きさで、専用で高価な事前訓練ステップを必要とする特殊なモデルと競合している。
論文 参考訳(メタデータ) (2022-08-01T11:14:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。