論文の概要: Deep Inductive Logic Programming meets Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2308.16210v1
- Date: Wed, 30 Aug 2023 09:08:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-01 18:59:43.674462
- Title: Deep Inductive Logic Programming meets Reinforcement Learning
- Title(参考訳): ディープインダクティブ論理プログラミングは強化学習に適合する
- Authors: Andreas Bueff (University of Edinburgh), Vaishak Belle (University of
Edinburgh)
- Abstract要約: 微分可能なニューラルロジック(dNL)ネットワークは、そのニューラルアーキテクチャがシンボリック推論を含むため、関数を学習することができる。
動的連続環境に対処するための強化学習(RRL)分野におけるdNLの適用を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: One approach to explaining the hierarchical levels of understanding within a
machine learning model is the symbolic method of inductive logic programming
(ILP), which is data efficient and capable of learning first-order logic rules
that can entail data behaviour. A differentiable extension to ILP, so-called
differentiable Neural Logic (dNL) networks, are able to learn Boolean functions
as their neural architecture includes symbolic reasoning. We propose an
application of dNL in the field of Relational Reinforcement Learning (RRL) to
address dynamic continuous environments. This represents an extension of
previous work in applying dNL-based ILP in RRL settings, as our proposed model
updates the architecture to enable it to solve problems in continuous RL
environments. The goal of this research is to improve upon current ILP methods
for use in RRL by incorporating non-linear continuous predicates, allowing RRL
agents to reason and make decisions in dynamic and continuous environments.
- Abstract(参考訳): 機械学習モデルにおける階層的な理解のレベルを説明する1つのアプローチは、データ効率が高く、データ振る舞いを包含できる一階述語論理規則を学習できる、帰納的論理プログラミング(ILP)の象徴的手法である。
ILPへの微分可能な拡張、いわゆる微分可能なニューラルロジック(dNL)ネットワークは、そのニューラルアーキテクチャがシンボリック推論を含むため、ブール関数を学習することができる。
動的連続環境に対処するための関係強化学習(RRL)分野におけるdNLの適用を提案する。
このことは,提案モデルがアーキテクチャを更新し,連続RL環境における問題の解決を可能にするため,dNLベースのILPをRRL設定に適用する上でのこれまでの作業の拡張である。
本研究の目的は、非線形連続述語を取り入れ、RRLエージェントが動的かつ連続的な環境において推論および決定を行えるようにすることで、現在のIRP法の改善である。
関連論文リスト
- Dynamics of Supervised and Reinforcement Learning in the Non-Linear Perceptron [3.069335774032178]
学習を記述するフロー方程式を導出するために,データセット処理アプローチを用いる。
学習ルール(教師付きまたは強化学習,SL/RL)と入力データ分布が知覚者の学習曲線に及ぼす影響を特徴付ける。
このアプローチは、より複雑な回路アーキテクチャの学習力学を解析する方法を示している。
論文 参考訳(メタデータ) (2024-09-05T17:58:28Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
大規模言語モデル(LLM)は、対話的な意思決定タスクにおいてインテリジェントなエージェントとして期待されている。
本稿では,トークンレベルでのLLMの最適化に適したエントロピー拡張RL法である,エントロピー正規化トークンレベル最適化(ETPO)を導入する。
我々は,データサイエンスコード生成を多段階対話型タスクのシリーズとしてモデル化したシミュレーション環境におけるETPOの有効性を評価する。
論文 参考訳(メタデータ) (2024-02-09T07:45:26Z) - A Neuromorphic Architecture for Reinforcement Learning from Real-Valued
Observations [0.34410212782758043]
強化学習(RL)は複雑な環境における意思決定のための強力なフレームワークを提供する。
本稿では,実測値を用いてRL問題を解くための新しいスパイキングニューラルネットワーク(SNN)アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-07-06T12:33:34Z) - Mastering Symbolic Operations: Augmenting Language Models with Compiled
Neural Networks [48.14324895100478]
ニューラルアーキテクチャ」は、コンパイルされたニューラルネットワーク(CoNN)を標準変換器に統合する。
CoNNは、人工的に生成された注意重みを通してルールを明示的にエンコードするように設計されたニューラルネットワークモジュールである。
実験は,シンボル操作における長さ一般化,効率,解釈可能性の観点から,既存の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-04-04T09:50:07Z) - Neuro-Symbolic Inductive Logic Programming with Logical Neural Networks [65.23508422635862]
我々は最近提案された論理ニューラルネットワーク(LNN)を用いた学習規則を提案する。
他のものと比較して、LNNは古典的なブール論理と強く結びついている。
標準ベンチマークタスクの実験では、LNNルールが極めて解釈可能であることを確認した。
論文 参考訳(メタデータ) (2021-12-06T19:38:30Z) - Neuro-Symbolic Reinforcement Learning with First-Order Logic [63.003353499732434]
論理ニューラルネットワークと呼ばれる最近のニューラルシンボリック・フレームワークを用いたテキストベースゲームのための新しいRL手法を提案する。
実験の結果,提案手法を用いたRLトレーニングは,TextWorldベンチマークにおいて,他の最先端のニューロシンボリック手法よりもはるかに高速に収束することがわかった。
論文 参考訳(メタデータ) (2021-10-21T08:21:49Z) - Reinforcement Learning with External Knowledge by using Logical Neural
Networks [67.46162586940905]
論理ニューラルネットワーク(LNN)と呼ばれる最近のニューラルシンボリックフレームワークは、ニューラルネットワークとシンボリックロジックの両方のキープロパティを同時に提供することができる。
外部知識ソースからのモデルフリー強化学習を可能にする統合手法を提案する。
論文 参考訳(メタデータ) (2021-03-03T12:34:59Z) - Incorporating Relational Background Knowledge into Reinforcement
Learning via Differentiable Inductive Logic Programming [8.122270502556374]
微分帰納的論理プログラミング(ILP)に基づく新しい深層強化学習(RRL)を提案する。
本稿では,BoxWorld,GridWorldなどの環境と,Solt-of-CLEVRデータセットのリレーショナル推論を用いた新しいRRLフレームワークの有効性を示す。
論文 参考訳(メタデータ) (2020-03-23T16:56:11Z) - Certified Reinforcement Learning with Logic Guidance [78.2286146954051]
線形時間論理(LTL)を用いて未知の連続状態/動作マルコフ決定過程(MDP)のゴールを定式化できるモデルフリーなRLアルゴリズムを提案する。
このアルゴリズムは、トレースが仕様を最大確率で満たす制御ポリシーを合成することが保証される。
論文 参考訳(メタデータ) (2019-02-02T20:09:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。