論文の概要: RetroBridge: Modeling Retrosynthesis with Markov Bridges
- arxiv url: http://arxiv.org/abs/2308.16212v2
- Date: Tue, 26 Mar 2024 11:32:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 01:10:34.123158
- Title: RetroBridge: Modeling Retrosynthesis with Markov Bridges
- Title(参考訳): RetroBridge:Markov Bridgesを用いた再合成モデリング
- Authors: Ilia Igashov, Arne Schneuing, Marwin Segler, Michael Bronstein, Bruno Correia,
- Abstract要約: 再合成計画は、市販の開始物質から標的分子への反応経路を設計することを目的としている。
本稿では,2つの離散分布間の依存性を近似する生成フレームワークであるマルコフブリッジモデルを紹介する。
次に, 新たなフレームワークでレトロシンセシス計画問題に対処し, テンプレートレスレトロシンセシスモデリング手法RetroBridgeを導入する。
- 参考スコア(独自算出の注目度): 2.256703675017117
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Retrosynthesis planning is a fundamental challenge in chemistry which aims at designing reaction pathways from commercially available starting materials to a target molecule. Each step in multi-step retrosynthesis planning requires accurate prediction of possible precursor molecules given the target molecule and confidence estimates to guide heuristic search algorithms. We model single-step retrosynthesis planning as a distribution learning problem in a discrete state space. First, we introduce the Markov Bridge Model, a generative framework aimed to approximate the dependency between two intractable discrete distributions accessible via a finite sample of coupled data points. Our framework is based on the concept of a Markov bridge, a Markov process pinned at its endpoints. Unlike diffusion-based methods, our Markov Bridge Model does not need a tractable noise distribution as a sampling proxy and directly operates on the input product molecules as samples from the intractable prior distribution. We then address the retrosynthesis planning problem with our novel framework and introduce RetroBridge, a template-free retrosynthesis modeling approach that achieves state-of-the-art results on standard evaluation benchmarks.
- Abstract(参考訳): 再合成計画は、市販の開始物質から標的分子への反応経路を設計することを目的とした化学の基本的な課題である。
多段階のレトロシンセシス計画における各ステップは、対象分子に与えられた前駆体分子の正確な予測と、ヒューリスティックな探索アルゴリズムを導くための信頼推定を必要とする。
離散状態空間における分布学習問題として,単一ステップの逆合成計画をモデル化する。
まず、マルコフブリッジモデル(Markov Bridge Model)を導入する。これは、結合されたデータポイントの有限サンプルを通してアクセス可能な2つの難解な離散分布間の依存性を近似するための生成フレームワークである。
私たちのフレームワークは、エンドポイントにピン留めされたMarkovプロセスであるMarkov Bridgeの概念に基づいている。
拡散に基づく手法とは異なり、マルコフブリッジモデルはサンプリングプロキシとしてトラクタブルノイズ分布を必要とせず、抽出可能な先行分布からのサンプルとして入力生成物分子を直接操作する。
提案手法はテンプレートレスのレトロシンセシスモデリング手法であるRetroBridgeを標準評価ベンチマークで実現し,提案手法を応用した。
関連論文リスト
- RetroGFN: Diverse and Feasible Retrosynthesis using GFlowNets [8.308430428140413]
単段階の逆合成は、標的分子の生成につながる一連の反応を予測することを目的としている。
本稿では,限られたデータセットの外部を探索し,多様な実行可能な反応を返却できる新しいモデルRetroGFNを提案する。
RetroGFNは,既存のラウンドトリップ精度の手法よりも高い性能を保ちながら,標準的なトップk精度で競合する結果が得られることを示す。
論文 参考訳(メタデータ) (2024-06-26T20:10:03Z) - Retro-prob: Retrosynthetic Planning Based on a Probabilistic Model [5.044138778500218]
再合成は有機化学の基本的だが挑戦的な課題である。
標的分子を与えられた後生合成の目標は、合成経路に組み立てられる一連の反応を見つけることである。
本稿では,標的分子の合成確率を最大化するために,retro-probと呼ばれる新しい逆合成計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-25T08:23:40Z) - UAlign: Pushing the Limit of Template-free Retrosynthesis Prediction with Unsupervised SMILES Alignment [51.49238426241974]
本稿では,テンプレートのないグラフ・ツー・シーケンスパイプラインであるUAlignを紹介した。
グラフニューラルネットワークとトランスフォーマーを組み合わせることで、分子固有のグラフ構造をより効果的に活用することができる。
論文 参考訳(メタデータ) (2024-03-25T03:23:03Z) - Models Matter: The Impact of Single-Step Retrosynthesis on Synthesis
Planning [0.8620335948752805]
再合成は、化学化合物を段階的に分子前駆体に分解する。
その2つの主要な研究方向、単段階の逆合成予測と多段階の合成計画は本質的に相互に絡み合っている。
単一ステップモデルを選択することで,合成計画の総合的な成功率を最大28%向上させることができることを示す。
論文 参考訳(メタデータ) (2023-08-10T12:04:47Z) - Mind the Retrosynthesis Gap: Bridging the divide between Single-step and
Multi-step Retrosynthesis Prediction [0.9134244356393664]
多段階のアプローチは、単段階の逆合成モデルに格納された化学情報を繰り返し適用する。
複数のステップに拡張された1段階の逆合成のためのモデルが、現在のマルチステップ手法の経路探索能力に大きな影響を及ぼすことを示す。
論文 参考訳(メタデータ) (2022-12-12T18:06:24Z) - RetroComposer: Discovering Novel Reactions by Composing Templates for
Retrosynthesis Prediction [63.14937611038264]
本稿では,テンプレート以外の新しいテンプレートを構築可能な,革新的な再合成予測フレームワークを提案する。
実験結果から,USPTO-50Kデータセットにおいて,328個のテスト反応のためのテンプレートを新たに作成できることが示唆された。
論文 参考訳(メタデータ) (2021-12-20T05:57:07Z) - Amortized Tree Generation for Bottom-up Synthesis Planning and
Synthesizable Molecular Design [2.17167311150369]
ターゲット分子の埋め込みを条件としたマルコフ決定過程として,合成経路を生成するための償却アプローチを報告した。
提案手法により,最適化された条件付き符号からデコードすることで,ボトムアップ方式で合成計画を実行し,合成可能な分子を設計することができる。
論文 参考訳(メタデータ) (2021-10-12T22:43:25Z) - RetroXpert: Decompose Retrosynthesis Prediction like a Chemist [60.463900712314754]
そこで我々は, テンプレートフリーな自動逆合成拡張アルゴリズムを考案した。
我々の方法はレトロシンセシスを2段階に分解する。
最先端のベースラインよりも優れている一方で、我々のモデルは化学的に合理的な解釈も提供する。
論文 参考訳(メタデータ) (2020-11-04T04:35:34Z) - Energy-based View of Retrosynthesis [70.66156081030766]
エネルギーモデルとしてシーケンスおよびグラフベースの手法を統一するフレームワークを提案する。
本稿では,ベイズ前方および後方予測に対して一貫した訓練を行うフレームワーク内での新しい二重変種を提案する。
このモデルは、反応型が不明なテンプレートフリーアプローチに対して、最先端の性能を9.6%向上させる。
論文 参考訳(メタデータ) (2020-07-14T18:51:06Z) - Learning Graph Models for Retrosynthesis Prediction [90.15523831087269]
再合成予測は有機合成の基本的な問題である。
本稿では,前駆体分子のグラフトポロジーが化学反応中にほとんど変化しないという考え方を生かしたグラフベースのアプローチを提案する。
提案モデルでは,テンプレートフリーおよび半テンプレートベースの手法よりも高い5,3.7%の精度でトップ1の精度を実現している。
論文 参考訳(メタデータ) (2020-06-12T09:40:42Z) - Retrosynthesis Prediction with Conditional Graph Logic Network [118.70437805407728]
コンピュータ支援のレトロシンセシスは、化学と計算機科学の双方から新たな関心を集めている。
本稿では,グラフニューラルネットワーク上に構築された条件付きグラフィカルモデルであるConditional Graph Logic Networkを用いて,この課題に対する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2020-01-06T05:36:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。