RetroBridge: Modeling Retrosynthesis with Markov Bridges
- URL: http://arxiv.org/abs/2308.16212v2
- Date: Tue, 26 Mar 2024 11:32:36 GMT
- Title: RetroBridge: Modeling Retrosynthesis with Markov Bridges
- Authors: Ilia Igashov, Arne Schneuing, Marwin Segler, Michael Bronstein, Bruno Correia,
- Abstract summary: Retrosynthesis planning aims at designing reaction pathways from commercially available starting materials to a target molecule.
We introduce the Markov Bridge Model, a generative framework aimed to approximate the dependency between two discrete distributions.
We then address the retrosynthesis planning problem with our novel framework and introduce RetroBridge, a template-free retrosynthesis modeling approach.
- Score: 2.256703675017117
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Retrosynthesis planning is a fundamental challenge in chemistry which aims at designing reaction pathways from commercially available starting materials to a target molecule. Each step in multi-step retrosynthesis planning requires accurate prediction of possible precursor molecules given the target molecule and confidence estimates to guide heuristic search algorithms. We model single-step retrosynthesis planning as a distribution learning problem in a discrete state space. First, we introduce the Markov Bridge Model, a generative framework aimed to approximate the dependency between two intractable discrete distributions accessible via a finite sample of coupled data points. Our framework is based on the concept of a Markov bridge, a Markov process pinned at its endpoints. Unlike diffusion-based methods, our Markov Bridge Model does not need a tractable noise distribution as a sampling proxy and directly operates on the input product molecules as samples from the intractable prior distribution. We then address the retrosynthesis planning problem with our novel framework and introduce RetroBridge, a template-free retrosynthesis modeling approach that achieves state-of-the-art results on standard evaluation benchmarks.
Related papers
- RetroGFN: Diverse and Feasible Retrosynthesis using GFlowNets [8.308430428140413]
Single-step retrosynthesis aims to predict a set of reactions that lead to the creation of a target molecule.
We propose a novel model, RetroGFN, that can explore outside the limited dataset and return a diverse set of feasible reactions.
We show that RetroGFN achieves competitive results on standard top-k accuracy while outperforming existing methods on round-trip accuracy.
arXiv Detail & Related papers (2024-06-26T20:10:03Z) - Retro-prob: Retrosynthetic Planning Based on a Probabilistic Model [5.044138778500218]
Retrosynthesis is a fundamental but challenging task in organic chemistry.
Given a target molecule, the goal of retrosynthesis is to find out a series of reactions which could be assembled into a synthetic route.
We propose a new retrosynthetic planning algorithm called retro-prob to maximize the successful synthesis probability of target molecules.
arXiv Detail & Related papers (2024-05-25T08:23:40Z) - UAlign: Pushing the Limit of Template-free Retrosynthesis Prediction with Unsupervised SMILES Alignment [51.49238426241974]
This paper introduces UAlign, a template-free graph-to-sequence pipeline for retrosynthesis prediction.
By combining graph neural networks and Transformers, our method can more effectively leverage the inherent graph structure of molecules.
arXiv Detail & Related papers (2024-03-25T03:23:03Z) - Models Matter: The Impact of Single-Step Retrosynthesis on Synthesis
Planning [0.8620335948752805]
Retrosynthesis consists of breaking down a chemical compound step-by-step into molecular precursors.
Its two primary research directions, single-step retrosynthesis prediction and multi-step synthesis planning, are inherently intertwined.
We show that the choice of the single-step model can improve the overall success rate of synthesis planning by up to +28%.
arXiv Detail & Related papers (2023-08-10T12:04:47Z) - Mind the Retrosynthesis Gap: Bridging the divide between Single-step and
Multi-step Retrosynthesis Prediction [0.9134244356393664]
Multi-step approaches repeatedly apply the chemical information stored in single-step retrosynthesis models.
We show that models designed for single-step retrosynthesis, when extended to multi-step, can have a tremendous impact on the route finding capabilities of current multi-step methods.
arXiv Detail & Related papers (2022-12-12T18:06:24Z) - RetroComposer: Discovering Novel Reactions by Composing Templates for
Retrosynthesis Prediction [63.14937611038264]
We propose an innovative retrosynthesis prediction framework that can compose novel templates beyond training templates.
Experimental results show that our method can produce novel templates for 328 test reactions in the USPTO-50K dataset.
arXiv Detail & Related papers (2021-12-20T05:57:07Z) - Amortized Tree Generation for Bottom-up Synthesis Planning and
Synthesizable Molecular Design [2.17167311150369]
We report an amortized approach to generate synthetic pathways as a Markov decision process conditioned on a target molecular embedding.
This approach allows us to conduct synthesis planning in a bottom-up manner and design synthesizable molecules by decoding from optimized conditional codes.
arXiv Detail & Related papers (2021-10-12T22:43:25Z) - RetroXpert: Decompose Retrosynthesis Prediction like a Chemist [60.463900712314754]
We devise a novel template-free algorithm for automatic retrosynthetic expansion.
Our method disassembles retrosynthesis into two steps.
While outperforming the state-of-the-art baselines, our model also provides chemically reasonable interpretation.
arXiv Detail & Related papers (2020-11-04T04:35:34Z) - Energy-based View of Retrosynthesis [70.66156081030766]
We propose a framework that unifies sequence- and graph-based methods as energy-based models.
We present a novel dual variant within the framework that performs consistent training over Bayesian forward- and backward-prediction.
This model improves state-of-the-art performance by 9.6% for template-free approaches where the reaction type is unknown.
arXiv Detail & Related papers (2020-07-14T18:51:06Z) - Learning Graph Models for Retrosynthesis Prediction [90.15523831087269]
Retrosynthesis prediction is a fundamental problem in organic synthesis.
This paper introduces a graph-based approach that capitalizes on the idea that the graph topology of precursor molecules is largely unaltered during a chemical reaction.
Our model achieves a top-1 accuracy of $53.7%$, outperforming previous template-free and semi-template-based methods.
arXiv Detail & Related papers (2020-06-12T09:40:42Z) - Retrosynthesis Prediction with Conditional Graph Logic Network [118.70437805407728]
Computer-aided retrosynthesis is finding renewed interest from both chemistry and computer science communities.
We propose a new approach to this task using the Conditional Graph Logic Network, a conditional graphical model built upon graph neural networks.
arXiv Detail & Related papers (2020-01-06T05:36:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.