論文の概要: Balancing between the Local and Global Structures (LGS) in Graph
Embedding
- arxiv url: http://arxiv.org/abs/2308.16403v2
- Date: Sat, 2 Sep 2023 00:11:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-07 02:16:23.460329
- Title: Balancing between the Local and Global Structures (LGS) in Graph
Embedding
- Title(参考訳): グラフ埋め込みにおける局所構造とグローバル構造(LGS)のバランス
- Authors: Jacob Miller and Vahan Huroyan and Stephen Kobourov
- Abstract要約: 本稿では,グラフ埋め込みにおける局所構造とグローバル構造(LGS)のバランスをとる手法を提案する。
合成および実世界のデータセットを用いたLGSの性能評価を行い, 現状の手法と競合することを示す。
- 参考スコア(独自算出の注目度): 1.4732811715354455
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a method for balancing between the Local and Global Structures
(LGS) in graph embedding, via a tunable parameter. Some embedding methods aim
to capture global structures, while others attempt to preserve local
neighborhoods. Few methods attempt to do both, and it is not always possible to
capture well both local and global information in two dimensions, which is
where most graph drawing live. The choice of using a local or a global
embedding for visualization depends not only on the task but also on the
structure of the underlying data, which may not be known in advance. For a
given graph, LGS aims to find a good balance between the local and global
structure to preserve. We evaluate the performance of LGS with synthetic and
real-world datasets and our results indicate that it is competitive with the
state-of-the-art methods, using established quality metrics such as stress and
neighborhood preservation. We introduce a novel quality metric, cluster
distance preservation, to assess intermediate structure capture. All
source-code, datasets, experiments and analysis are available online.
- Abstract(参考訳): 本稿では,可変パラメータを用いて,グラフ埋め込みにおける局所構造と大域構造(lgs)のバランスをとる手法を提案する。
埋め込む方法は、グローバルな構造を捉えようとするものもあれば、地域の保存を目指すものもある。
両方を行おうとする手法はほとんどなく、局所的な情報と大域的な情報の両方を2次元で捉えることは必ずしも不可能である。
可視化のためにローカルまたはグローバル埋め込みを使うかの選択は、タスクだけでなく基礎となるデータの構造にも依存する。
所定のグラフに対して、lgsは保存するローカル構造とグローバル構造のバランスを良好に確保することを目指している。
我々は,LGSの性能を実世界のデータセットで評価し,ストレスや近隣保存などの確立した品質指標を用いて,最先端の手法と競合することを示す。
中間構造キャプチャーを評価するために,新しい品質指標,クラスタ距離保存を導入する。
ソースコード、データセット、実験、分析はすべてオンラインで利用可能だ。
関連論文リスト
- Efficient Multi-View Graph Clustering with Local and Global Structure
Preservation [59.49018175496533]
局所・グローバル構造保存を用いた効率的なマルチビューグラフクラスタリング(EMVGC-LG)という,アンカーベースのマルチビューグラフクラスタリングフレームワークを提案する。
具体的には、EMVGC-LGがクラスタリング品質を向上させるために、アンカー構築とグラフ学習を共同で最適化する。
さらに、EMVGC-LGはサンプル数に関する既存のAMVGCメソッドの線形複雑性を継承する。
論文 参考訳(メタデータ) (2023-08-31T12:12:30Z) - Local2Global: A distributed approach for scaling representation learning
on graphs [10.254620252788776]
本稿では,グラフ表現学習における分散型「ローカル2言語」アプローチを提案する。
提案手法は,エッジ再構築におけるスケールと精度の良好なトレードオフと半教師付き分類を実現する。
また、異常検出の下流タスクについても検討し、ローカル2globalを使ってサイバーセキュリティネットワークの異常を強調できることを示す。
論文 参考訳(メタデータ) (2022-01-12T23:00:22Z) - An Entropy-guided Reinforced Partial Convolutional Network for Zero-Shot
Learning [77.72330187258498]
エントロピー誘導強化部分畳み込みネットワーク(ERPCNet)を提案する。
ERPCNetは、人間のアノテーションのない意味的関連性と視覚的相関に基づいて、局所性を抽出し、集約する。
グローバルな協力的局所性を動的に発見するだけでなく、ポリシー勾配最適化のためにより高速に収束する。
論文 参考訳(メタデータ) (2021-11-03T11:13:13Z) - Tackling the Local Bias in Federated Graph Learning [48.887310972708036]
フェデレーショングラフ学習(FGL)では、グローバルグラフは異なるクライアントに分散し、各クライアントがサブグラフを保持する。
既存のFGL手法では、クロスクライアントエッジを効果的に活用できず、トレーニング中に構造情報が失われる。
集中型環境で訓練されたモデルと類似した局所モデルを作成するための新しいFGLフレームワークを提案する。
論文 参考訳(メタデータ) (2021-10-22T08:22:36Z) - Local Augmentation for Graph Neural Networks [78.48812244668017]
本稿では,局所的な部分グラフ構造によりノード特性を向上する局所拡張を提案する。
局所的な拡張に基づいて、プラグイン・アンド・プレイ方式で任意のGNNモデルに適用可能な、LA-GNNという新しいフレームワークをさらに設計する。
論文 参考訳(メタデータ) (2021-09-08T18:10:08Z) - Local2Global: Scaling global representation learning on graphs via local
training [6.292766967410996]
本稿では,グラフ表現学習のための分散型「ローカル2言語」アプローチを提案する。
パッチ毎に局所表現を個別に訓練し、局所表現をグローバルに一貫した表現に組み合わせる。
中規模データセットの予備的な結果が期待でき、グローバルに訓練された埋め込みに匹敵するローカル2グロバルのグラフ再構成性能が期待できる。
論文 参考訳(メタデータ) (2021-07-26T14:08:31Z) - Self-supervised Graph-level Representation Learning with Local and
Global Structure [71.45196938842608]
自己教師付き全グラフ表現学習のためのローカル・インスタンスとグローバル・セマンティック・ラーニング(GraphLoG)という統合フレームワークを提案する。
GraphLoGは、局所的な類似点の保存に加えて、グローバルなセマンティッククラスタをキャプチャする階層的なプロトタイプも導入している。
モデル学習のための効率的なオンライン予測最大化(EM)アルゴリズムがさらに開発された。
論文 参考訳(メタデータ) (2021-06-08T05:25:38Z) - LGD-GCN: Local and Global Disentangled Graph Convolutional Networks [35.71362724342354]
Disentangled Graph Convolutional Network (DisenGCN)は、現実世界のグラフで発生する潜伏要因を解消するための奨励的なフレームワークである。
本稿では,Global Disentangled Graph Convolutional Network (LGD-GCN) を導入する。
論文 参考訳(メタデータ) (2021-04-24T06:40:35Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
HSI分類のための自動グラフ学習法(MGCN-AGL)を用いたマルチレベルグラフ畳み込みネットワーク(GCN)を提案する。
空間的に隣接する領域における重要度を特徴付けるために注意機構を利用することで、最も関連性の高い情報を適応的に組み込んで意思決定を行うことができる。
MGCN-AGLは局所的に生成した表現表現に基づいて画像領域間の長距離依存性を符号化する。
論文 参考訳(メタデータ) (2020-09-19T09:26:20Z) - Deep graph learning for semi-supervised classification [11.260083018676548]
グラフ学習(GL)は、グラフ畳み込みネットワーク(GCN)に基づくデータの分布構造(グラフ構造)を動的に捉えることができる
既存の手法は主に計算層と関連する損失をGCNに組み合わせ、グローバルグラフや局所グラフを探索する。
半教師付き分類において,より優れたグラフ表現を求めるためにディープグラフ学習(DGL)を提案する。
論文 参考訳(メタデータ) (2020-05-29T05:59:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。